BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 6243143)

  • 1. Evidence that proteases are involved in superoxide production by human polymorphonuclear leukocytes and monocytes.
    Kitagawa S; Takaku F; Sakamoto S
    J Clin Invest; 1980 Jan; 65(1):74-81. PubMed ID: 6243143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of synthetic protease inhibitors on superoxide (O2-), hydrogen peroxide (H2O2) and hydroxyl radical production by human polymorphonuclear leukocytes.
    Tamura K; Manabe T; Imanishi K; Nonaka A; Asano N; Yamaki K; Tobe T
    Hepatogastroenterology; 1992 Feb; 39(1):59-61. PubMed ID: 1314767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation between aggregation and superoxide production in human granulocytes.
    Whitin JC; Cohen HJ
    J Immunol; 1985 Feb; 134(2):1206-11. PubMed ID: 2981262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine protease inhibitors inhibit superoxide production by human polymorphonuclear leukocytes and monocytes stimulated by various surface active agents.
    Kitagawa S; Takaku F; Sakamoto S
    FEBS Lett; 1979 Nov; 107(2):331-4. PubMed ID: 228974
    [No Abstract]   [Full Text] [Related]  

  • 5. Cooperation of cytochalasin D and anti-microtubular agents in stimulating superoxide anion production in polymorphonuclear leukocytes.
    Okamura N; Hanakura K; Kodakari M; Ishibashi S
    J Biochem; 1980 Jul; 88(1):139-44. PubMed ID: 6251033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloperoxidase-based chemiluminescence of polymorphonuclear leukocytes and monocytes.
    McNally JA; Bell AL
    J Biolumin Chemilumin; 1996; 11(2):99-106. PubMed ID: 8726584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal transduction in human monocytes: relationship between superoxide production and the level of kinase C in the membrane.
    Costa-Casnellie MR; Segel GB; Lichtman MA
    J Cell Physiol; 1986 Dec; 129(3):336-42. PubMed ID: 3023403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of in vitro and in vivo supplementation with zinc on superoxide anion production in leukocytes.
    Nakamura T; Shiraishi N; Aono K
    Physiol Chem Phys Med NMR; 1987; 19(3):147-51. PubMed ID: 2831552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface.
    Goldstein IM; Cerqueira M; Lind S; Kaplan HB
    J Clin Invest; 1977 Feb; 59(2):249-54. PubMed ID: 188867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes.
    Lin M; Rikihisa Y
    Cell Microbiol; 2007 Apr; 9(4):861-74. PubMed ID: 17087735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fibronectin on actin organization and respiratory burst activity in neutrophils, monocytes, and macrophages.
    Yang KD; Augustine NH; Shaio MF; Bohnsack JF; Hill HR
    J Cell Physiol; 1994 Feb; 158(2):347-53. PubMed ID: 8106571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercellular adhesion molecule 1 and beta2 integrins in C1q-stimulated superoxide production by human neutrophils: an example of a general regulatory mechanism governing acute inflammation.
    Tyagi S; Nicholson-Weller A; Barbashov SF; Tas SW; Klickstein LB
    Arthritis Rheum; 2000 Oct; 43(10):2248-59. PubMed ID: 11037884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enhancing effect of cytochalasin A on concanavalin A-induced superoxide anion release from polymorphonuclear leukocytes.
    Matsuura R
    Hiroshima J Med Sci; 1981 Sep; 30(3):229-36. PubMed ID: 6271709
    [No Abstract]   [Full Text] [Related]  

  • 14. A comparison of the superoxide-releasing response in human polymorphonuclear leukocytes and monocytes.
    Kitagawa S; Takaku F; Sakamoto S
    J Immunol; 1980 Jul; 125(1):359-64. PubMed ID: 6247398
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of cytoskeletal elements in cytochalasin E-induced superoxide production by human polymorphonuclear leukocytes.
    Nakagawara A; Minakami S
    Biochim Biophys Acta; 1979 Apr; 584(1):143-8. PubMed ID: 221046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the secretory leukocyte protease inhibitor on leukocyte proteases released during phagocytosis.
    Axelsson L; Linder C; Ohlsson K; Rosengren M
    Biol Chem Hoppe Seyler; 1988 May; 369 Suppl():89-93. PubMed ID: 2578013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Inhibitory effect of nafamostat mesilate (FUT-175) on O2- production in rat polymorphonuclear leucocytes].
    Oda M; Ogihara M; Sato T; Kurumi M; Iwaki M
    Nihon Yakurigaku Zasshi; 1986 May; 87(5):521-6. PubMed ID: 3015753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of substance P on superoxide anion and IL-8 production by human PMNL.
    Serra MC; Calzetti F; Ceska M; Cassatella MA
    Immunology; 1994 May; 82(1):63-9. PubMed ID: 7519174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms of reactive oxygen metabolite generation from human polymorphonuclear leukocytes induced by crocidolite asbestos.
    Ishizaki T; Yano E; Evans PH
    Environ Res; 1997 Nov; 75(2):135-40. PubMed ID: 9417844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of Haemophilus ducreyi cytolethal distending toxin on cells involved in immune response.
    Svensson LA; Tarkowski A; Thelestam M; LagergÄrd T
    Microb Pathog; 2001 Mar; 30(3):157-66. PubMed ID: 11273741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.