BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6243403)

  • 61. Neurotensin affects metabolism of opioid peptides, catecholamines and inositol phospholipids in bovine chromaffin cells.
    Bommer M; Herz A
    Life Sci; 1989; 44(5):327-35. PubMed ID: 2915604
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Alpha 2-adrenoceptors do not regulate catecholamine secretion by bovine adrenal medullary cells: a study with clonidine.
    Powis DA; Baker PF
    Mol Pharmacol; 1986 Feb; 29(2):134-41. PubMed ID: 2869403
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of substance P on nicotine-induced intracellular Ca2+ dynamics in bovine adrenal chromaffin cells.
    Suzuki S; Habara Y; Kanno T
    Jpn J Vet Res; 1999 Aug; 47(1-2):3-12. PubMed ID: 10810557
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ca(2+)-activated K+ channels modulate muscarinic secretion in cat chromaffin cells.
    Uceda G; Artalejo AR; López MG; Abad F; Neher E; García AG
    J Physiol; 1992 Aug; 454():213-30. PubMed ID: 1282156
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nicotinic stimulation of catecholamine synthesis and tyrosine hydroxylase phosphorylation in cervine adrenal medullary chromaffin cells.
    Knowles PJ; Douglas SA; Bunn SJ
    J Neuroendocrinol; 2011 Mar; 23(3):224-31. PubMed ID: 21121973
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Does acetylcholinesterase inhibition affect catecholamine secretion by adrenomedullary cells?
    Sharabi Y; Zimlichman R; Mansouri R; Chun J; Goldstein DS
    Isr Med Assoc J; 2004 Jul; 6(7):396-9. PubMed ID: 15274528
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intrinsic GABAergic system of adrenal chromaffin cells.
    Kataoka Y; Gutman Y; Guidotti A; Panula P; Wroblewski J; Cosenza-Murphy D; Wu JY; Costa E
    Proc Natl Acad Sci U S A; 1984 May; 81(10):3218-22. PubMed ID: 6328506
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of opioid peptide synthesis and processing in adrenal chromaffin cells by catecholamines and cyclic adenosine 3':5'-monophosphate.
    Wilson SP; Unsworth CD; Viveros OH
    J Neurosci; 1984 Dec; 4(12):2993-3001. PubMed ID: 6094747
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis of enkephalins by adrenal medullary chromaffin cells: reserpine increases incorporation of radiolabeled amino acids.
    Wilson SP; Chang KJ; Viveros OH
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4364-8. PubMed ID: 6933489
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of noncompetitive nicotinic receptor blockers on catecholamine release from cultured adrenal chromaffin cells.
    McKay DB; Trent-Sanchez P
    Pharmacology; 1990; 40(4):224-30. PubMed ID: 1697077
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Opiate receptors and adrenal medullary function.
    Lemaire S; Lemaire I; Dean DM; Livett BG
    Nature; 1980 Nov; 288(5788):303-4. PubMed ID: 6253829
    [No Abstract]   [Full Text] [Related]  

  • 72. Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells.
    Stachowiak MK; Hong JS; Viveros OH
    Brain Res; 1990 Mar; 510(2):277-88. PubMed ID: 1970506
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A dopaminergic receptor modulates catecholamine release from the cat adrenal gland.
    Artalejo AR; García AG; Montiel C; Sánchez-García P
    J Physiol; 1985 May; 362():359-68. PubMed ID: 4020691
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Blockade of nicotinic receptors of bovine adrenal chromaffin cells by nanomolar concentrations of atropine.
    González-Rubio JM; García de Diego AM; Egea J; Olivares R; Rojo J; Gandía L; García AG; Hernández-Guijo JM
    Eur J Pharmacol; 2006 Mar; 535(1-3):13-24. PubMed ID: 16530180
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nicotinic cholinergic regulation of tetrahydrobiopterin levels in bovine adrenal chromaffin cells.
    Waymire JC; Ayling JE; Craviso GL
    Adv Exp Med Biol; 1993; 338():235-8. PubMed ID: 7905697
    [No Abstract]   [Full Text] [Related]  

  • 76. Inhibition by opioid agonists and enhancement by antagonists of the release of catecholamines from the dog adrenal gland in response to splanchnic nerve stimulation: evidence for the functional role of opioid receptors.
    Kimura T; Katoh M; Satoh S
    J Pharmacol Exp Ther; 1988 Mar; 244(3):1098-102. PubMed ID: 2855240
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nicotinic acetylcholine receptors of adrenal chromaffin cells.
    Sala F; Nistri A; Criado M
    Acta Physiol (Oxf); 2008 Feb; 192(2):203-12. PubMed ID: 18005395
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Intrinsic gamma aminobutyric acid receptors modulate the release of catecholamine from canine adrenal gland in situ.
    Kataoka Y; Fujimoto M; Alho H; Guidotti A; Geffard M; Kelly GD; Hanbauer I
    J Pharmacol Exp Ther; 1986 Nov; 239(2):584-90. PubMed ID: 2877086
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effects of ketamine, phencyclidine and lidocaine on catecholamine secretion from cultured bovine adrenal chromaffin cells.
    Purifoy JA; Holz RW
    Life Sci; 1984 Oct; 35(18):1851-7. PubMed ID: 6492994
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synergistic actions of Ca2+ and the phorbol ester TPA on K+-induced catecholamine release from bovine adrenal chromaffin cells.
    Brocklehurst KW; Pollard HB
    Biochem Biophys Res Commun; 1986 Nov; 140(3):990-8. PubMed ID: 3778497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.