These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 6243600)

  • 21. Extraction and estimation of glycogen and oligosaccharides from rat heart.
    Bartley W; Dean B
    Anal Biochem; 1968 Oct; 25(1):99-108. PubMed ID: 5704776
    [No Abstract]   [Full Text] [Related]  

  • 22. Role of uridine diphosphate glucose in the biosynthesis of starch. Mechanism of formation and enlargement of a glucoproteic acceptor.
    Lavintman N; Tandecarz J; Carceller M; Mendiara S; Cardini CE
    Eur J Biochem; 1974 Dec; 50(1):145-55. PubMed ID: 4452354
    [No Abstract]   [Full Text] [Related]  

  • 23. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. 3. Control of glucose 6-phosphate dehydrogenase.
    Sanwal BD
    J Biol Chem; 1970 Apr; 245(7):1626-31. PubMed ID: 4392411
    [No Abstract]   [Full Text] [Related]  

  • 24. Equilibrium relations between pyridine nucleotides and adenine nucleotides and their roles in the regulation of metabolic processes.
    Krebs HA; Veech RL
    Adv Enzyme Regul; 1969; 7():397-413. PubMed ID: 4391643
    [No Abstract]   [Full Text] [Related]  

  • 25. Regulatory mechanisms involving nicotinamide adenine nucleotides as all teric effectors. II. Control of phosphoenolpyruvate carboxykinase.
    Wright JA; Sanwal BD
    J Biol Chem; 1969 Apr; 244(7):1838-45. PubMed ID: 4388616
    [No Abstract]   [Full Text] [Related]  

  • 26. Stimulant effect of a heart infusion on streptococcal nicotinamide adenine dinucleotidase (EC 3.2.2.5). (Preliminary report).
    Zahradník F; Masková L; Pravda Z
    J Hyg Epidemiol Microbiol Immunol; 1970; 14(1):123-4. PubMed ID: 4315261
    [No Abstract]   [Full Text] [Related]  

  • 27. A role for nicotinamide adenine dinucleotide glycohydrolase in the control of glyceraldehyde-3-phosphate dehydrogenase activity.
    Green S; Dobrjansky A; Bodansky O
    Cancer Res; 1969 Aug; 29(8):1568-73. PubMed ID: 4308957
    [No Abstract]   [Full Text] [Related]  

  • 28. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. I. Control characteristics of malate dehydrogenase.
    Sanwal BD
    J Biol Chem; 1969 Apr; 244(7):1831-7. PubMed ID: 4305466
    [No Abstract]   [Full Text] [Related]  

  • 29. [The regulation of myocardial metabolism].
    Severin SE
    Vestn Akad Med Nauk SSSR; 1966; 21(4):3-9. PubMed ID: 4302670
    [No Abstract]   [Full Text] [Related]  

  • 30. Polymerization of the adenosine 5'-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions.
    Fujimura S; Hasegawa S; Shimizu Y; Sugimura T
    Biochim Biophys Acta; 1967 Sep; 145(2):247-59. PubMed ID: 4294274
    [No Abstract]   [Full Text] [Related]  

  • 31. Polymerization of the adenosine 5'-diphosphate ribose moiety of NAD by rat liver nuclear enzyme.
    Sugimura T; Fujimura S; Hasegawa S; Kawamura Y
    Biochim Biophys Acta; 1967 Apr; 138(2):438-41. PubMed ID: 4292779
    [No Abstract]   [Full Text] [Related]  

  • 32. Studies on the polymer of adenosine diphosphate ribose. II. Characterization of the polymer.
    Reeder RH; Ueda K; Honjo T; Nishizuka Y; Hayaishi O
    J Biol Chem; 1967 Jul; 242(13):3172-9. PubMed ID: 4291073
    [No Abstract]   [Full Text] [Related]  

  • 33. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei.
    Nishizuka Y; Ueda K; Nakazawa K; Hayaishi O
    J Biol Chem; 1967 Jul; 242(13):3164-71. PubMed ID: 4291072
    [No Abstract]   [Full Text] [Related]  

  • 34. Interaction of spinach leaf adenosine diphosphate glucose alpha-1,4-glucan alpha-4-glucosyl transferase and alpha-1,4-glucan, alpha-1,4-glucan-6-glycosyl transferase in synthesis of branched alpha-glucan.
    Hawker JS; Ozbun JL; Ozaki H; Greenberg E; Preiss J
    Arch Biochem Biophys; 1974 Feb; 160(2):530-51. PubMed ID: 4208773
    [No Abstract]   [Full Text] [Related]  

  • 35. A precursor of glycogen biosynthesis: alpha-1,4-glucan-protein.
    Krisman CR; Barengo R
    Eur J Biochem; 1975 Mar; 52(1):117-23. PubMed ID: 809265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The initiation of glycogen biosynthesis in Escherichia coli.
    Barengo R; Flawia M; Krisman CR
    FEBS Lett; 1975 May; 53(3):274-8. PubMed ID: 236916
    [No Abstract]   [Full Text] [Related]  

  • 37. Streptococcal extracellular NAD-glycohydrolase. Optimal temperature and activation by cysteine.
    Zahradník FJ
    Folia Microbiol (Praha); 1977; 22(2):92-7. PubMed ID: 191337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Streptococcal extracellular NAD+ nucleosidase. Characterization of changes occurring during purification.
    Zahradník FJ
    Folia Microbiol (Praha); 1980; 25(1):40-9. PubMed ID: 6243600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase.
    Meehl MA; Pinkner JS; Anderson PJ; Hultgren SJ; Caparon MG
    PLoS Pathog; 2005 Dec; 1(4):e35. PubMed ID: 16333395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NAD hydrolysis: chemical and enzymatic mechanisms.
    Oppenheimer NJ
    Mol Cell Biochem; 1994 Sep; 138(1-2):245-51. PubMed ID: 7898470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.