These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6243649)

  • 21. Structural transformation of the nuclear matrix in situ.
    Herlan G; Quevedo R; Wunderlich F
    Exp Cell Res; 1978 Aug; 115(1):103-10. PubMed ID: 98334
    [No Abstract]   [Full Text] [Related]  

  • 22. Magnesium mediated change in physical state of phospholipid modulates membrane ATPase activity.
    Yang FY; Huang YG; Zhang XF; Guo BQ
    Magnes Res; 1988 Jul; 1(1-2):13-21. PubMed ID: 2908561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fine structural localization of phosphatases in cilia and basal bodies of Tetrahymena pyriformis.
    Dentler WL
    Tissue Cell; 1977; 9(2):209-22. PubMed ID: 20678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mg2+-induced changes of lipid order and conformation of (Na+ + K+)-ATPase.
    Amler E; Teisinger J; Svoboda P
    Biochim Biophys Acta; 1987 Dec; 905(2):376-82. PubMed ID: 2825784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid.
    Ohki K; Goto M; Nozawa Y
    Biochim Biophys Acta; 1984 Feb; 769(3):563-70. PubMed ID: 6421321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of cholesterol on the properties of the membranes of isolated sheep liver nuclei and nuclear envelopes.
    Agutter PS; Suckling KE
    Biochim Biophys Acta; 1981 Apr; 643(1):182-90. PubMed ID: 7236686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of thermal adaptation of membrane lipids in Tetrahymena pyriformis NT-1. Possible evidence for temperature-mediated induction of palmitoyl-CoA desaturase.
    Nozawa Y; Kasai R
    Biochim Biophys Acta; 1978 Apr; 529(1):54-66. PubMed ID: 416850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of temperature on nuclear membranes and nucleo-cytoplasmic RNA-transport in Tetrahymena grown at different temperatures.
    Nägel WC; Wunderlich F
    J Membr Biol; 1977 Apr; 32(1-2):151-64. PubMed ID: 404429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relationship between the nuclear membranes and the endoplasmic reticulum in interphase cells.
    Richardson JC; Agutter PS
    Biochem Soc Trans; 1980 Aug; 8(4):459-65. PubMed ID: 7004942
    [No Abstract]   [Full Text] [Related]  

  • 30. Electron spin resonance studies of the effects of lipids on the environment of proteins in mitochondrial membranes.
    Lenaz G; Curatola G; Mazzanti L; Zolese G; Ferretti G
    Arch Biochem Biophys; 1983 Jun; 223(2):369-80. PubMed ID: 6190436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of calcium, lanthanum, and temperature on the fluidity of spin-labeled human platelets.
    Sauerheber RD; Zimmermann TS; Esgate JA; VanderLaan WP; Gordon LM
    J Membr Biol; 1980; 52(3):201-19. PubMed ID: 6247493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes.
    Aloia RC; Tian H; Jensen FC
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5181-5. PubMed ID: 8389472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron spin resonance studies of lipid fluidity changes in membranes of an uncoupler-resistant mutant of Escherichia coli.
    Herring FG; Krisman A; Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1985 Oct; 819(2):231-40. PubMed ID: 2994734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Mg2+ on membrane fluidity and K+ transport in rat liver mitochondria.
    Ligeti E; Horváth LI
    Biochim Biophys Acta; 1980 Jul; 600(1):150-6. PubMed ID: 6249358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence.
    Kitajima Y; Thompson GA
    J Cell Biol; 1977 Mar; 72(3):744-55. PubMed ID: 402370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a correlation between swimming velocity and membrane fluidity of Tetrahymena cells.
    Goto M; Ohki K; Nozawa Y
    Biochim Biophys Acta; 1982 Dec; 693(2):335-40. PubMed ID: 6818990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane fluidity is not an important physiological regulator of the (Ca2+-Mg2+)-dependent ATPase of sarcoplasmic reticulum.
    East JM; Jones OT; Simmonds AC; Lee AG
    J Biol Chem; 1984 Jul; 259(13):8070-1. PubMed ID: 6145709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnesium-sensitive guanylate cyclase and its endogenous activating factor in Tetrahymena pyriformis.
    Nakazawa K; Shimonaka H; Nagao S; Kudo S; Nozawa Y
    J Biochem; 1979 Aug; 86(2):321-4. PubMed ID: 39068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Triton X-100 and high salt resistant residue of Saccharomyces cerevisiae nuclear membranes.
    Mann K; Mecke D
    Z Naturforsch C Biosci; 1982 Oct; 37(10):916-20. PubMed ID: 6758390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive lowering of the lipid clustering temperature within Tetrahymena membranes.
    Wunderlich F; Ronai A
    FEBS Lett; 1975 Jul; 55(1):237-41. PubMed ID: 166888
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.