These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6243686)

  • 1. Inhibition of platelet function by antithrombotic agents which selectively inhibit low-Km cyclic 3',5'-adenosine monophosphate phosphodiesterase.
    Tang SS; Frojmovic MM
    J Lab Clin Med; 1980 Feb; 95(2):241-57. PubMed ID: 6243686
    [No Abstract]   [Full Text] [Related]  

  • 2. 7-Bromo-1,5-dihydro-3,6-dimethylimidazo[2,1-b]quinazolin-2(3H)- one (Ro 15-2041), a potent antithrombotic agent that selectively inhibits platelet cyclic AMP-phosphodiesterase.
    Muggli R; Tschopp TB; Mittelholzer E; Baumgartner HR
    J Pharmacol Exp Ther; 1985 Oct; 235(1):212-9. PubMed ID: 2995647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3.
    Feijge MA; Ansink K; Vanschoonbeek K; Heemskerk JW
    Biochem Pharmacol; 2004 Apr; 67(8):1559-67. PubMed ID: 15041473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of mitomycin C on platelet aggregation and adenosine 3',5'-monophosphate metabolism.
    Hashimoto S; Shibata S; Kobayashi B
    Thromb Haemost; 1978 Feb; 39(1):177-85. PubMed ID: 205972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective inhibitor of platelet cyclic adenosine monophosphate phosphodiesterase, cilostamide, inhibits platelet aggregation.
    Hidaka H; Hayashi H; Kohri H; Kimura Y; Hosokawa T; Igawa T; Saitoh Y
    J Pharmacol Exp Ther; 1979 Oct; 211(1):26-30. PubMed ID: 226672
    [No Abstract]   [Full Text] [Related]  

  • 6. Cyclic GMP binding and phosphodiesterase: implication for platelet function.
    Hamet P; Coquil JF; Bousseau-Lafortune S; Franks DJ; Tremblay J
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():119-36. PubMed ID: 6202123
    [No Abstract]   [Full Text] [Related]  

  • 7. [The mode of action and clinical applications of phosphodiesterase inhibitors as anti-platelet drugs].
    Murohara Y; Takatsu Y; Yui Y; Kawai C
    Nihon Rinsho; 1989 Apr; 47(4):935-9. PubMed ID: 2545947
    [No Abstract]   [Full Text] [Related]  

  • 8. A reversed-phase HPLC-based method for the assay of cyclic nucleotide phosphodiesterase activity.
    Abbott BM; Thompson PE
    Anal Biochem; 2005 Apr; 339(1):185-7. PubMed ID: 15766728
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanisms of antiplatelet activity of PC-09, a newly synthesized pyridazinone derivative.
    Cherng SC; Huang WH; Shiau CY; Lee AR; Chou TC
    Eur J Pharmacol; 2006 Feb; 532(1-2):32-7. PubMed ID: 16457809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of functional compartments of cyclic AMP in rat platelets by the use of phosphodiesterase inhibitors.
    Ashida S; Sakuma K
    Adv Second Messenger Phosphoprotein Res; 1992; 25():229-39. PubMed ID: 1313259
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of Sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5.
    Dunkern TR; Hatzelmann A
    Cell Signal; 2005 Mar; 17(3):331-9. PubMed ID: 15567064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new insight of anti-platelet effects of sirtinol in platelets aggregation via cyclic AMP phosphodiesterase.
    Liu FC; Liao CH; Chang YW; Liou JT; Day YJ
    Biochem Pharmacol; 2009 Apr; 77(8):1364-73. PubMed ID: 19426675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of platelet adenyl cyclase system on oxidative phosphorylation.
    Hashimoto S; Shibata S; Kobayashi B
    Thromb Diath Haemorrh; 1975 Sep; 34(1):42-9. PubMed ID: 171798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypertrophied right hearts get two for the price of one: can inhibiting phosphodiesterase type 5 also inhibit phosphodiesterase type 3?
    Kass DA
    Circulation; 2007 Jul; 116(3):233-5. PubMed ID: 17638937
    [No Abstract]   [Full Text] [Related]  

  • 15. Multiple cyclic nucleotide phosphodiesterases in human trabecular meshwork cells.
    Zhou L; Thompson WJ; Potter DE
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1745-52. PubMed ID: 10393044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensitive assay of human blood platelet cyclic nucleotide phosphodiesterase activity by HPLC using fluorescence derivatization and its application to assessment of cyclic nucleotide phosphodiesterase inhibitors.
    Ohba Y; Soda K; Zaitsu K
    Biol Pharm Bull; 2001 May; 24(5):567-9. PubMed ID: 11379782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative potencies of dipyridamole and related agents as inhibitors of cyclic nucleotide phosphodiesterases: possible explanation of mechansim of inhibition of platelet function.
    McElroy FA; Philip RB
    Life Sci; 1975 Nov; 17(9):1479-93. PubMed ID: 173959
    [No Abstract]   [Full Text] [Related]  

  • 18. New antithrombotics with an indazole structure.
    Yildiz AK; Rehse K; Stasch JP; Bischoff E
    Arch Pharm (Weinheim); 2004 Jun; 337(6):311-6. PubMed ID: 15188220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of halothane on the cyclic 3',5'-adenosine monophosphate enzyme system in human platelets.
    Walter F; Vulliemoz Y; Verosky Y; Triner L
    Anesth Analg; 1980 Nov; 59(11):856-61. PubMed ID: 6252800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases.
    Manns JM; Brenna KJ; Colman RW; Sheth SB
    Thromb Haemost; 2002 May; 87(5):873-9. PubMed ID: 12038792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.