These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6243978)

  • 1. Proton-induced phase separation in phosphatidylserine/phosphatidylcholine membranes.
    Tokutomi S; Ohki K; Ohnishi SI
    Biochim Biophys Acta; 1980 Feb; 596(2):192-200. PubMed ID: 6243978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disappearance of calcium-induced phase separation in phosphatidylserine-phosphatidylcholine membranes caused by protonation and by electric current.
    Tokutomi S; Eguchi G; Ohnishi SI
    Biochim Biophys Acta; 1979 Mar; 552(1):78-88. PubMed ID: 219893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-induced phase separation in phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine mixed membranes.
    Tokutomi S; Lew R; Ohnishi S
    Biochim Biophys Acta; 1981 May; 643(2):276-82. PubMed ID: 6261813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a new phosphatidylserine spin-label and calcium-induced lateral phase separation in phosphatidylserine-phosphatidylcholine membranes.
    Iot T; Ohnish S; Ishinaga M; Kito M
    Biochemistry; 1975 Jul; 14(14):3064-9. PubMed ID: 167814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles.
    Grasdalen H; Göran Eriksson LE; Westman J; Ehrenberg A
    Biochim Biophys Acta; 1977 Sep; 469(2):151-62. PubMed ID: 561615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphatidylinositol replacement by diacylglycerol on various physical properties of artificial membranes with respect to the role of phosphatidylinositol response.
    Ohki K; Sekiya T; Yamauchi T; Nozawa Y
    Biochim Biophys Acta; 1982 Dec; 693(2):341-50. PubMed ID: 6297556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study.
    Galla HJ; Sackmann E
    Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-resolution NMR study (1H, 13C, 31P) of the interaction of paramagnetic ions with phospholipids in aqueous dispersions.
    Nolden PW; Ackermann T
    Biophys Chem; 1976 May; 4(3):297-304. PubMed ID: 985701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-binding to phospholipids. Interaction of calcium with phosphatidylserine.
    Hauser H; Darke A; Phillips MC
    Eur J Biochem; 1976 Feb; 62(2):335-44. PubMed ID: 3416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of La2+ with phosphatidylserine vesicles: binding, phase transition, leakage, 31P-NMR and fusion.
    Hammoudah MM; Nir S; Bentz J; Mayhew E; Stewart TP; Hui SW; Kurland RJ
    Biochim Biophys Acta; 1981 Jul; 645(1):102-14. PubMed ID: 6266472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman study of calcium-induced fusion and molecular segregation of phosphatidylserine/dimyristoyl phosphatidylcholine-d54 membranes.
    Hark SK; Ho JT
    Biochim Biophys Acta; 1980 Sep; 601(1):54-62. PubMed ID: 7407165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of spectrin-actin and synthetic phospholipids. II. The interaction with phosphatidylserine.
    Mombers C; Verkleij AJ; de Gier J; van Deenen LL
    Biochim Biophys Acta; 1979 Mar; 551(2):271-81. PubMed ID: 420834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration.
    Cevc G; Watts A; Marsh D
    Biochemistry; 1981 Aug; 20(17):4955-65. PubMed ID: 6271176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes.
    Ohki S; Düzgünes N
    Biochim Biophys Acta; 1979 Apr; 552(3):438-49. PubMed ID: 444512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge and pH dependent drug binding to model membranes. A 2H-NMR and light absorption study.
    Westman J; Boulanger Y; Ehrenberg A; Smith IC
    Biochim Biophys Acta; 1982 Mar; 685(3):315-28. PubMed ID: 7199938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-binding to phospholipids. Interaction of calcium and lanthanide ions with phosphatidylcholine (lecithin).
    Hauser H; Phillips MC; Levine BA; Williams RJ
    Eur J Biochem; 1975 Oct; 58(1):133-44. PubMed ID: 241630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation.
    Menestrina G; Forti S; Gambale F
    Biophys J; 1989 Mar; 55(3):393-405. PubMed ID: 2467697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex phase mixing of phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles.
    Stewart TP; Hui SW; Portis AR; Papahadjopoulos D
    Biochim Biophys Acta; 1979 Sep; 556(1):1-16. PubMed ID: 476113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of small unilamellar liposomes with phospholipid planar bilayer membranes and large single-bilayer vesicles.
    Düzgüneş N; Ohki S
    Biochim Biophys Acta; 1981 Feb; 640(3):734-47. PubMed ID: 6163458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of phosphatidylserine and mixed phosphatidylserine-phosphatidylcholine vesicles. Dependence on calcium concentration and temperature.
    Sun ST; Hsang CC; Day EP; Ho JT
    Biochim Biophys Acta; 1979 Oct; 557(1):45-52. PubMed ID: 549643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.