BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6244301)

  • 1. Protein kinase translocation following beta-adrenergic receptor activation in C6 glioma cells.
    Schwartz JP; Costa E
    J Biol Chem; 1980 Apr; 255(7):2943-8. PubMed ID: 6244301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. beta Adrenergic receptor-mediated regulation of cyclic nucleotide phosphodiesterase in C6 glioma cells: vinblastine blockade of isoproterenol induction.
    Schwartz JP; Costa E
    J Pharmacol Exp Ther; 1980 Mar; 212(3):569-72. PubMed ID: 6244389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The beta-adrenergic receptor system in human glioma-derived cell lines: the mode of phosphodiesterase induction and the macromolecules phosphorylated by cyclic AMP-dependent protein kinase.
    Shitara N; Reisine TD; Nakamura H; Fujiwara M; Smith BH; Kornblith PL; McKeever PE
    Brain Res; 1984 Mar; 296(1):67-74. PubMed ID: 6324958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation by a beta-adrenergic receptor of a Ca2+-independent adenosine 3',5'-(cyclic)monophosphate phosphodiesterase in C6 glioma cells.
    Onali P; Schwartz JP; Hanbauer I; Costa E
    Biochim Biophys Acta; 1981 Jul; 675(2):285-92. PubMed ID: 6268187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the beta-adrenergic responsiveness between high and low passage rat glioma C6 cells.
    Mallorga P; Tallman JF; Fishman PH
    Biochim Biophys Acta; 1981 Dec; 678(2):221-9. PubMed ID: 6274415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. beta-Adrenergic receptor desensitization stimulates glucose uptake in C6 rat glioma cells.
    Shitara N; McKeever PE; Cummins C; Smith BH; Kornblith PL; Hirata F
    Biochem Biophys Res Commun; 1982 Dec; 109(3):753-61. PubMed ID: 6297489
    [No Abstract]   [Full Text] [Related]  

  • 8. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C.
    Debernardi MA; Munshi R; Brooker G
    Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in activities of cyclic nucleotide systems and in beta-adrenergic receptor-mediated activation of cyclic AMP-dependent protein kinase during progression and regression of isoproterenol-induced cardiac hypertrophy.
    Tse J; Brackett NL; Kuo JF
    Biochim Biophys Acta; 1978 Sep; 542(3):399-411. PubMed ID: 210840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. beta-Adrenergic receptors of frog erythrocytes. Biochemical sequelae following stimulation with isoproterenol.
    Chuang DM; Costa E
    Neurochem Res; 1979 Dec; 4(6):777-93. PubMed ID: 232545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-adrenergic receptor regulation of a cyclic AMP phosphodiesterase in C6 glioma cells.
    Schwartz JP; Onali P
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():195-203. PubMed ID: 6326524
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of beta-adrenergic receptor mRNA in rat C6 glioma cells is sensitive to the state of microtubule assembly.
    Hough C; Fukamauchi F; Chuang DM
    J Neurochem; 1994 Feb; 62(2):421-30. PubMed ID: 7905023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor-associated changes of the catecholamine-sensitive adenylate cyclase in glioma cells doubly transformed with Moloney sarcoma virus.
    Higashida H; Miki N; Tanaka T; Kato K; Nakano T; Nagatsu T; Kano-Tanaka K
    J Cell Physiol; 1982 Feb; 110(2):107-13. PubMed ID: 6279681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of nerve growth factor content in C6 glioma cells by beta-adrenergic receptor stimulation.
    Schwartz JP; Costa E
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Nov; 300(2):123-9. PubMed ID: 22824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quenched-flow study of a receptor-triggered second messenger response: cyclic AMP burst elicited by isoproterenol in C6 glioma cell membranes.
    Valeins H; Volker T; Viratelle O; Labouesse J
    FEBS Lett; 1988 Jan; 226(2):331-6. PubMed ID: 2828105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hormone-independent rise of adenosine 3',5'-monophosphate desensitizes coupling of beta-adrenergic receptors to adenylate cyclase in rat glioma C6-cells.
    Koschel K
    Eur J Biochem; 1980; 108(1):163-9. PubMed ID: 6157529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. beta-Adrenergic regulation of protein phosphorylation and its relationship to exocrine secretion in dispersed rat parotid gland acinar cells.
    Baum BJ; Freiberg JM; Ito H; Roth GS; Filburn CR
    J Biol Chem; 1981 Sep; 256(18):9731-6. PubMed ID: 6270099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroxine-induced changes in characteristics and activities of beta-adrenergic receptors and adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate systems in the heart may be related to reputed catecholamine supersensitivity in hyperthyroidism.
    Tse J; Wrenn RW; Kuo JF
    Endocrinology; 1980 Jul; 107(1):6-16. PubMed ID: 6247145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cAMP levels by protein kinase C in C6 rat glioma cells.
    Bressler JP; Tinsely P
    J Neurosci Res; 1990 Jan; 25(1):81-6. PubMed ID: 2157030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum catecholamines desensitize beta-adrenergic receptors of cultured C6 glioma cells.
    Dibner MD; Insel PA
    J Biol Chem; 1981 Jul; 256(14):7343-6. PubMed ID: 6265445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.