BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6244389)

  • 1. beta Adrenergic receptor-mediated regulation of cyclic nucleotide phosphodiesterase in C6 glioma cells: vinblastine blockade of isoproterenol induction.
    Schwartz JP; Costa E
    J Pharmacol Exp Ther; 1980 Mar; 212(3):569-72. PubMed ID: 6244389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-adrenergic receptor regulation of a cyclic AMP phosphodiesterase in C6 glioma cells.
    Schwartz JP; Onali P
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():195-203. PubMed ID: 6326524
    [No Abstract]   [Full Text] [Related]  

  • 3. RNA polymerase II in C6 glioma cells. Alpha-amanitin blockade of cAMP phosphodiesterase induction by beta-adrenergic stimulation.
    Schwartz JP
    Exp Cell Res; 1982 Jan; 137(1):39-45. PubMed ID: 6276203
    [No Abstract]   [Full Text] [Related]  

  • 4. Stimulation of nerve growth factor mRNA content in C6 glioma cells by a beta-adrenergic receptor and by cyclic AMP.
    Schwartz JP
    Glia; 1988; 1(4):282-5. PubMed ID: 2853697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The beta-adrenergic receptor system in human glioma-derived cell lines: the mode of phosphodiesterase induction and the macromolecules phosphorylated by cyclic AMP-dependent protein kinase.
    Shitara N; Reisine TD; Nakamura H; Fujiwara M; Smith BH; Kornblith PL; McKeever PE
    Brain Res; 1984 Mar; 296(1):67-74. PubMed ID: 6324958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase translocation following beta-adrenergic receptor activation in C6 glioma cells.
    Schwartz JP; Costa E
    J Biol Chem; 1980 Apr; 255(7):2943-8. PubMed ID: 6244301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity and cyclic nucleotides in the rat pineal gland.
    Zatz M
    J Neural Transm Suppl; 1978; (13):97-114. PubMed ID: 224142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-associated changes of the catecholamine-sensitive adenylate cyclase in glioma cells doubly transformed with Moloney sarcoma virus.
    Higashida H; Miki N; Tanaka T; Kato K; Nakano T; Nagatsu T; Kano-Tanaka K
    J Cell Physiol; 1982 Feb; 110(2):107-13. PubMed ID: 6279681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation by a beta-adrenergic receptor of a Ca2+-independent adenosine 3',5'-(cyclic)monophosphate phosphodiesterase in C6 glioma cells.
    Onali P; Schwartz JP; Hanbauer I; Costa E
    Biochim Biophys Acta; 1981 Jul; 675(2):285-92. PubMed ID: 6268187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cAMP levels by protein kinase C in C6 rat glioma cells.
    Bressler JP; Tinsely P
    J Neurosci Res; 1990 Jan; 25(1):81-6. PubMed ID: 2157030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C.
    Debernardi MA; Munshi R; Brooker G
    Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desensitization of beta receptor mediated cyclic AMP response of cultured fibroblasts by partial agonists.
    Franklin TJ; Twose PA
    J Cyclic Nucleotide Res; 1979; 5(1):19-30. PubMed ID: 35555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turnover of beta 1- and beta 2-adrenergic receptors after down-regulation or irreversible blockade.
    Neve KA; Molinoff PB
    Mol Pharmacol; 1986 Aug; 30(2):104-11. PubMed ID: 3016496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-Adrenergic stimulation of rat cardiac fibroblasts promotes protein synthesis via the activation of phosphatidylinositol 3-kinase.
    Colombo F; Noël J; Mayers P; Mercier I; Calderone A
    J Mol Cell Cardiol; 2001 Jun; 33(6):1091-106. PubMed ID: 11444915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of dexamethasone and beta-adrenergic receptor agonists on the nerve growth factor gene transcription.
    Colangelo AM; Mallei A; Johnson PF; Mocchetti I
    Brain Res Mol Brain Res; 2004 May; 124(2):97-104. PubMed ID: 15135217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of C6 glioma cells in serum-containing medium decreases beta-adrenergic receptor number.
    Dibner MD; Insel PA
    J Cell Physiol; 1981 Nov; 109(2):309-15. PubMed ID: 6271796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rat parotid gland protein kinase activation. Relationship to enzyme secretion.
    Spearman TN; Butcher FR
    Mol Pharmacol; 1982 Jan; 21(1):121-7. PubMed ID: 6182452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta adrenergic receptor repopulation of C6 glioma cells after irreversible blockade and down regulation.
    Homburger V; Pantaloni C; Lucas M; Gozlan H; Bockaert J
    J Cell Physiol; 1984 Dec; 121(3):589-97. PubMed ID: 6094600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-adrenergic receptor subtypes and subcellular compartmentation of cyclic AMP and cyclic AMP-dependent protein kinase in rabbit cardiomyocytes.
    Buxton IL; Brunton LL
    Biochem Int; 1985 Aug; 11(2):137-44. PubMed ID: 2996547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased cyclic adenosine 3':5'-monophosphate phosphodiesterase activity in the epidermis of phorbol ester-treated mouse skin and in papillomas.
    Mufson RA; Simsiman RC; Boutwell RK
    Cancer Res; 1979 Jun; 39(6 Pt 1):2036-40. PubMed ID: 221099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.