BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6244849)

  • 1. Specific spin-labeling at trypsin active site. Application of 'inverse substrate' to the structural analysis of the active site.
    Fujioka T; Tanizawa K; Kanaoka Y
    Biochim Biophys Acta; 1980 Mar; 612(1):205-12. PubMed ID: 6244849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatility of oxazolidine spin labels--a model study with acyl-alpha-chymotrypsin.
    Hsia JC; Panthananickal A
    Can J Biochem; 1976 Aug; 54(8):704-6. PubMed ID: 182343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Streptomyces griseus and bovine trypsin by active site analysis using fluorescent acyl groups.
    Tanizawa K; Nakano M; Kanaoka Y
    Biochim Biophys Acta; 1987 Jul; 913(3):292-9. PubMed ID: 3109486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of staphylococcal protease. I. Spin labelling of the active site and a comparison with other proteases.
    Dugas H; Gaudet F
    Can J Biochem; 1975 Feb; 53(2):155-63. PubMed ID: 236078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel chiral microenvironmental probe at the active site of trypsin. Extrinsic cotton effects of acyl-trypsin possessing an enantiomeric pair of chromophores.
    Nakayama H; Tanizawa K; Kanaoka Y; Witkop B
    Eur J Biochem; 1980 Nov; 112(2):403-9. PubMed ID: 7460930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases.
    Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates".
    Fujioka T; Tanizawa K; Kanaoka Y
    J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site structure and stability of the thiol protease papain studied by electron paramagnetic resonance employing a methanethiosulfonate spin label.
    Butterfield DA; Lee J
    Arch Biochem Biophys; 1994 Apr; 310(1):167-71. PubMed ID: 8161201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the active-site conformations of bovine alpha-thrombin and meizothrombin(desF1) by electron spin resonance.
    Boxrud PD; Berliner LJ
    J Protein Chem; 1996 Feb; 15(2):231-42. PubMed ID: 8924207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior of trypsin and related enzymes toward amidinophenyl esters.
    Nozawa M; Tanizawa K; Kanaoka Y; Moriya H
    J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.
    Ping ZA; Butterfiel DA
    Biophys J; 1991 Sep; 60(3):623-8. PubMed ID: 1657229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron spin resonance studies of bovine plasma amine oxidase. Probing of the environment about the substrate-liberated sulfhydryl groups in the active site.
    Zeidan H; Watanabe K; Piette LH; Yasunobu KT
    J Biol Chem; 1980 Aug; 255(16):7621-6. PubMed ID: 6249807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ESR study of free and immobilized elastase.
    Dimicoli JL; Nakache M; Lhoste JM
    Biochim Biophys Acta; 1979 Dec; 571(2):294-304. PubMed ID: 228732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation.
    Todd AP; Cong J; Levinthal F; Levinthal C; Hubbell WL
    Proteins; 1989; 6(3):294-305. PubMed ID: 2560193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-induced conformational changes of the periplasmic N-terminus of an outer-membrane transporter by site-directed spin labeling.
    Fanucci GE; Coggshall KA; Cadieux N; Kim M; Kadner RJ; Cafiso DS
    Biochemistry; 2003 Feb; 42(6):1391-400. PubMed ID: 12578351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Esterase-assisted accumulation of 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl into lymphocytes.
    Kao JP; Rosen GM
    Org Biomol Chem; 2004 Jan; 2(1):99-102. PubMed ID: 14737666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ESR study of the active-site conformations of free and immobilized trypsin.
    Berliner LJ; Miller ST; Uy R; Royer GP
    Biochim Biophys Acta; 1973 Jul; 315(1):195-9. PubMed ID: 4355266
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction of spin-labeled tryptamine with monoamine oxidase: probing the microenvironment of the active site by spin probe-spin label techniques.
    Zeidan HM
    Biochim Biophys Acta; 1988 Jun; 955(1):111-8. PubMed ID: 2838087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme.
    Tanizawa K; Kasaba Y; Kanaoka Y
    J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling.
    Hurth KM; Nilges MJ; Carlson KE; Tamrazi A; Belford RL; Katzenellenbogen JA
    Biochemistry; 2004 Feb; 43(7):1891-907. PubMed ID: 14967030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.