BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6245141)

  • 1. Protein phosphorylation in human peripheral blood lymphocytes: mitogen-induced increases in protein phosphorylation in intact lymphocytes.
    Chaplin DD; Wedner HJ; Parker CW
    J Immunol; 1980 May; 124(5):2390-8. PubMed ID: 6245141
    [No Abstract]   [Full Text] [Related]  

  • 2. Ornithine decarboxylase induction in mitogen-stimulated lymphocytes is related to the specific activation of type I adenosine cyclic 3',5'-monophosphate-dependent protein kinase.
    Byus CV; Klimpel GR; Lucas DO; Russell DH
    Mol Pharmacol; 1978 May; 14(3):431-41. PubMed ID: 207970
    [No Abstract]   [Full Text] [Related]  

  • 3. Activation of murine lymphocytes by cyclic guanosine 3',5'-monophosphate: specificity and role in mitogen activity.
    Derubertis FR; Zenser T
    Biochim Biophys Acta; 1976 Mar; 428(1):91-103. PubMed ID: 4115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme systems involved in phosphorylation and dephosphorylation of two endogenous phosphoproteins in neuronal membranes.
    Uno I; Ueda T; Greengard P
    Arch Biochem Biophys; 1977 Oct; 183(2):480-9. PubMed ID: 21619
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of cyclic nucleotides in the transport of water and electrolytes.
    Strewler GJ; Orloff J
    Adv Cyclic Nucleotide Res; 1977; 8():311-61. PubMed ID: 200128
    [No Abstract]   [Full Text] [Related]  

  • 6. A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. II. Possible relation to phosphatidylinositol turnover induced by mitogens.
    Ku Y; Kishimoto A; Takai Y; Ogawa Y; Kimura S; Nishizuka Y
    J Immunol; 1981 Oct; 127(4):1375-9. PubMed ID: 7276563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of enzyme activity by reversible phosphorylation.
    Hardie DG; Guy PS
    Prog Brain Res; 1982; 56():145-61. PubMed ID: 6298869
    [No Abstract]   [Full Text] [Related]  

  • 8. Cyclic nucleotides, protein phosphorylation, and neuronal function.
    Greengard P
    Adv Cyclic Nucleotide Res; 1975; 5():585-601. PubMed ID: 165688
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphorylation of contractile proteins in relation to muscle function.
    Stull JT
    Adv Cyclic Nucleotide Res; 1980; 13():39-93. PubMed ID: 6251706
    [No Abstract]   [Full Text] [Related]  

  • 10. [Protein phosphorylation in the brain].
    Miyamoto E; Ohta Y
    Tanpakushitsu Kakusan Koso; 1990 May; 35(7 Suppl):1054-63. PubMed ID: 2162550
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of calmodulin, troponin, and cyclic AMP in the regulation of glycogen metabolism in mammalian skeletal muscle.
    Cohen P
    Adv Cyclic Nucleotide Res; 1981; 14():345-59. PubMed ID: 6269387
    [No Abstract]   [Full Text] [Related]  

  • 12. Exogenous substrate stimulates autodephosphorylation of cyclic-AMP-dependent protein kinase II.
    Gjertsen BT; Fauske B; Døskeland SO
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):497-503. PubMed ID: 8396916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of bovine adrenal tyrosine 3-monooxygenase by phosphorylation-dephosphorylation reaction, catalyzed by adenosine 3':5'-monophosphate-dependent protein kinase and phosphoprotein phosphatase.
    Yamauchi T; Fujisawa H
    J Biol Chem; 1979 Jul; 254(14):6408-13. PubMed ID: 36394
    [No Abstract]   [Full Text] [Related]  

  • 14. Cyclic nucleotides in hemostasis and thrombosis.
    Steer ML; Salzman EW
    Adv Cyclic Nucleotide Res; 1980; 12():71-92. PubMed ID: 6250376
    [No Abstract]   [Full Text] [Related]  

  • 15. Variation of activity of protein kinases in unstimulated and phytohemagglutinin-stimulated normal and leukemic human lymphocytes.
    Carpentieri U; Minguell JJ; Haggard ME
    Cancer Res; 1980 Aug; 40(8 Pt 1):2714-8. PubMed ID: 6248212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic adenosine monophosphate.
    Mukhopadhyay S; Ananthanarayanan M; Stieger B; Meier PJ; Suchy FJ; Anwer MS
    Hepatology; 1998 Dec; 28(6):1629-36. PubMed ID: 9828228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes in the cyclic AMP-dependent phosphorylation and dephosphorylation of a protein endogenous to murine brain and liver.
    Malkinson AM
    Biochem Biophys Res Commun; 1977 Sep; 78(1):91-8. PubMed ID: 199176
    [No Abstract]   [Full Text] [Related]  

  • 18. Lessons from old and new kinases.
    Van Eyk JE
    Circ Res; 2004 Feb; 94(2):135-7. PubMed ID: 14764647
    [No Abstract]   [Full Text] [Related]  

  • 19. Functional compartmentation of cyclic AMP and protein kinase in heart.
    Brunton LL; Hayes JS; Mayer SE
    Adv Cyclic Nucleotide Res; 1981; 14():391-7. PubMed ID: 6269390
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of cyclic adenosine 3': 5'-monophosphate on phosphoprotein kinase and phosphatase fractions prepared from rat liver nuclei.
    Dokas L; Rittschof D; Kleinsmith LJ
    Arch Biochem Biophys; 1978 Dec; 191(2):578-89. PubMed ID: 217306
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.