These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6245163)

  • 1. Electrical interactions between the giant axons of a polychaete worm (Sabella penicillus L.).
    Mellon D; Treherne JE; Lane NJ; Harrison JB; Langley CK
    J Exp Biol; 1980 Feb; 84():119-36. PubMed ID: 6245163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic potentials and threshold currents underlying spike production in motor giant axons of Aglantha digitale.
    Meech RW; Mackie GO
    J Neurophysiol; 1995 Oct; 74(4):1662-70. PubMed ID: 8989402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal adaptations to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). I. Ultrastructural and electrophysiological observations on axonal accessibility.
    Skaer HL; Treherne JE; Benson JA; Moreton RB
    J Exp Biol; 1978 Oct; 76():191-204. PubMed ID: 712327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential.
    Barrett EF; Barrett JN
    J Physiol; 1982 Feb; 323():117-44. PubMed ID: 6980272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decremental conduction of the visual signal in barnacle lateral eye.
    Shaw SR
    J Physiol; 1972 Jan; 220(1):145-75. PubMed ID: 4110376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and anatomical characteristics of reticulospinalneurones in lamprey.
    Wickelgren WO
    J Physiol; 1977 Aug; 270(1):89-114. PubMed ID: 915826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evoked depolarizing and hyperpolarizing potentials in reticulospinal axons of lamprey.
    Matthews G; Wickelgren WO
    J Physiol; 1978 Jun; 279():551-67. PubMed ID: 671362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained depolarizing potentials in reticulospinal axons during evoked seizure activity in lamprey spinal cord.
    Matthews G; Wickelgren WO
    J Neurophysiol; 1978 Mar; 41(2):384-93. PubMed ID: 650273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal adaptation to osmotic stress in Sabella penicillus L. [proceedings].
    Carlson AD; Pichon Y; Treherne JE
    J Physiol; 1977 Jul; 269(1):76P-77P. PubMed ID: 894583
    [No Abstract]   [Full Text] [Related]  

  • 10. Axonal adaptations to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). II. Effects of ionic dilution on the resting and action potentials.
    Benson JA; Treherne JE
    J Exp Biol; 1978 Oct; 76():205-19. PubMed ID: 712328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voluntary contraction impairs the refractory period of transmission in healthy human axons.
    Kuwabara S; Lin CS; Mogyoros I; Cappelen-Smith C; Burke D
    J Physiol; 2001 Feb; 531(Pt 1):265-75. PubMed ID: 11179409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal adaptation to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). III. Adaptations to hyposmotic dilution.
    Benson JA; Treherne JE
    J Exp Biol; 1978 Oct; 76():221-35. PubMed ID: 712329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic basis of axonal excitability in an extreme euryhaline osmoconformer, the serpulid worm Mercierella enigmatica (Fauvel).
    Carlson AD; Treherne JE
    J Exp Biol; 1977 Apr; 67():205-15. PubMed ID: 894179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axon-Schwann cell interaction in the squid nerve fibre.
    Villegas J
    J Physiol; 1972 Sep; 225(2):275-96. PubMed ID: 5074387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological investigation of beta,beta'-iminodipropionitrile neuropathy: intracellular recordings in spinal cord.
    Gold BG; Lowndes HE
    Brain Res; 1984 Aug; 308(2):235-44. PubMed ID: 6089956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An examination of frog myelinated axons using intracellular microelectrode recording: the role of voltage-dependent and leak conductances on the steady-state electrical properties.
    Poulter MO; Hashiguchi T; Padjen AL
    J Neurophysiol; 1993 Dec; 70(6):2301-12. PubMed ID: 7509856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal conduction and electrical coupling in regenerating earthworm giant axons.
    Lyckman AW; Bittner GD
    Exp Neurol; 1992 Sep; 117(3):299-306. PubMed ID: 1397166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures.
    Pekala D; Szkudlarek H; Raastad M
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27707780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons.
    Barman SM; Gebber GL
    J Neurophysiol; 1985 Jun; 53(6):1551-66. PubMed ID: 2989448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ephaptic transmission in squid giant axons.
    Ramón F; Moore JW
    Am J Physiol; 1978 May; 234(5):C162-9. PubMed ID: 206154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.