BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 6245265)

  • 1. Replication of herpesvirus DNA. V. Maturation of concatemeric DNA of pseudorabies virus to genome length is related to capsid formation.
    Ladin BF; Blankenship ML; Ben-Porat T
    J Virol; 1980 Mar; 33(3):1151-64. PubMed ID: 6245265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudorabies virus protein homologous to herpes simplex virus type 1 ICP18.5 is necessary for capsid maturation.
    Mettenleiter TC; Saalmüller A; Weiland F
    J Virol; 1993 Mar; 67(3):1236-45. PubMed ID: 8382292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of the major nonstructural DNA binding protein of a herpesvirus (pseudorabies).
    Ben-Porat T; Veach RA; Hampl H
    Virology; 1983 Jan; 124(2):411-24. PubMed ID: 6297164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids.
    Klupp BG; Granzow H; Keil GM; Mettenleiter TC
    J Virol; 2006 Jul; 80(13):6235-46. PubMed ID: 16775311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway of assembly of herpesvirus capsids: an analysis using DNA+ temperature-sensitive mutants of pseudorabies virus.
    Ladin BF; Ihara S; Hampl H; Ben-Porat T
    Virology; 1982 Jan; 116(2):544-61. PubMed ID: 6278727
    [No Abstract]   [Full Text] [Related]  

  • 6. Morphogenesis of nuclear inclusions and virus capsids in HEL cells infected with temperature-sensitive mutants of human cytomegalovirus.
    Maeda F; Ihara S; Watanabe Y
    J Gen Virol; 1979 Aug; 44(2):419-32. PubMed ID: 230291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquisition of an additional internal cleavage site differentially affects the ability of pseudorabies virus to multiply in different host cells.
    Rall GF; Lu ZQ; Sugg N; Veach RA; Ben-Porat T
    J Virol; 1991 Dec; 65(12):6604-11. PubMed ID: 1658364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the immediate-early functions of pseudorabies virus.
    Ihara S; Feldman L; Watanabe S; Ben-Porat T
    Virology; 1983 Dec; 131(2):437-54. PubMed ID: 6318440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in herpes simplex virus type 1 genes encoding VP5 and VP23 abrogate capsid formation and cleavage of replicated DNA.
    Desai P; DeLuca NA; Glorioso JC; Person S
    J Virol; 1993 Mar; 67(3):1357-64. PubMed ID: 8382300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a temperature-sensitive fiber mutant of type 5 adenovirus and effect of the mutation on virion assembly.
    Chee-Sheung CC; Ginsberg HS
    J Virol; 1982 Jun; 42(3):932-50. PubMed ID: 7097864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation.
    Wolf DG; Courcelle CT; Prichard MN; Mocarski ES
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1895-900. PubMed ID: 11172047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The herpes simplex virus UL33 gene product is required for the assembly of full capsids.
    al-Kobaisi MF; Rixon FJ; McDougall I; Preston VG
    Virology; 1991 Jan; 180(1):380-8. PubMed ID: 1845831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.
    Feierbach B; Piccinotti S; Bisher M; Denk W; Enquist LW
    PLoS Pathog; 2006 Aug; 2(8):e85. PubMed ID: 16933992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1.
    Sherman G; Bachenheimer SL
    Virology; 1988 Apr; 163(2):471-80. PubMed ID: 2833020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frog virus 3 morphogenesis: effect of temperature and metabolic inhibitors.
    Tripier F; Braunwald J; Markovic L; Kirn A
    J Gen Virol; 1977 Oct; 37(1):39-52. PubMed ID: 562390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo transcription and protein synthesis capabilities of bunyaviruses: wild-type snowshoe hare virus and its temperature-sensitive group I, group II, and group I/II mutants.
    Vezza AC; Repik PM; Cash P; Bishop DH
    J Virol; 1979 Aug; 31(2):426-36. PubMed ID: 480477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation.
    Desai P; Sexton GL; McCaffery JM; Person S
    J Virol; 2001 Nov; 75(21):10259-71. PubMed ID: 11581394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simian virus 40-host cell interactions. II. Cytoplasmic and nucleolar accumulation of simian virus 40 virion protein.
    Widmer C; Robb JA
    J Virol; 1974 Dec; 14(6):1530-46. PubMed ID: 4372410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and preliminary characterization of temperature-sensitive mutants of pseudorabies virus.
    Huy VD; Stäber H; Waschke K; Rosenthal HA
    Acta Virol; 1977 Sep; 21(5):397-404. PubMed ID: 22234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells.
    Desai PJ
    J Virol; 2000 Dec; 74(24):11608-18. PubMed ID: 11090159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.