These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6245626)

  • 1. The use of phenylmethylsulfonyl fluoride in the study of catabolite inactivation and repression in intact cells of Saccharomyces cervisiae.
    Grossmann MK
    Arch Microbiol; 1980 Feb; 124(2-3):293-5. PubMed ID: 6245626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytic catabolite inactivation in Saccharomyces cerevisiae.
    Holzer H
    Revis Biol Celular; 1989; 21():305-19. PubMed ID: 2561496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process.
    Zimmermann FK; Kaufmann I; Rasenberger H; Haubetamann P
    Mol Gen Genet; 1977 Feb; 151(1):95-103. PubMed ID: 194140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH
    J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation.
    de Jong-Gubbels P; van den Berg MA; Steensma HY; van Dijken JP; Pronk JT
    FEMS Microbiol Lett; 1997 Aug; 153(1):75-81. PubMed ID: 9252575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence on cyclic AMP of glucose-induced inactivation of yeast gluconeogenetic enzymes.
    Tortora P; Burlini N; Leoni F; Guerritore A
    FEBS Lett; 1983 May; 155(1):39-42. PubMed ID: 6301882
    [No Abstract]   [Full Text] [Related]  

  • 7. Catabolite inactivation of fructose 1,6-bisphosphatase and cytoplasmic malate dehydrogenase in yeast.
    Funaguma T; Toyoda Y; Sy J
    Biochem Biophys Res Commun; 1985 Jul; 130(1):467-71. PubMed ID: 2992470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolite inactivation of gluconeogenic enzymes in mutants of yeast deficient in proteinase B.
    Zubenko GS; Jones EW
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4581-5. PubMed ID: 228302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae.
    López-Boado YS; Herrero P; Gascón S; Moreno F
    Arch Microbiol; 1987 Apr; 147(3):231-4. PubMed ID: 3036035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression.
    Ciriacy M
    Mol Gen Genet; 1977 Jul; 154(2):213-20. PubMed ID: 197391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential sensitivities to glucose and galactose repression of gluconeogenic and respiratory enzymes from Saccharomyces cerevisiae.
    Herrero P; Fernández R; Moreno F
    Arch Microbiol; 1985 Dec; 143(3):216-9. PubMed ID: 3006623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae.
    Gancedo JM; Gancedo C
    Eur J Biochem; 1979 Nov; 101(2):455-60. PubMed ID: 230032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A partial defect in carbon catabolite repression in mutants of Saccharomyces cerevisiae with reduced hexose phosphyorylation.
    Entian KD; Zimmermann FK; Scheel I
    Mol Gen Genet; 1977 Nov; 156(1):99-105. PubMed ID: 340896
    [No Abstract]   [Full Text] [Related]  

  • 14. How does glucose initiate proteolysis of yeast fructose-1,6-bisphosphatase?
    Holzer H; Purwin C
    Biomed Biochim Acta; 1986; 45(11-12):1657-63. PubMed ID: 3034238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite inactivation, cyclic AMP and protein phosphorylation in the methylotrophic yeast Hansenula polymorpha.
    Hofmann KH; Polnisch E
    Antonie Van Leeuwenhoek; 1991 Jul; 60(1):49-54. PubMed ID: 1724594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae.
    Entian KD; Dröll L; Mecke D
    Arch Microbiol; 1983 Jun; 134(3):187-192. PubMed ID: 6311131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP, fructose-2,6-bisphosphate and catabolite inactivation of enzymes in the hydrocarbon-assimilating yeast Candida maltosa.
    Polnisch E; Hofmann K
    Arch Microbiol; 1989; 152(3):269-72. PubMed ID: 2549901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite inactivation of bakers'-yeast uridine nucleosidase. Isolation and partial purification of a specific proteolytic inactivase.
    Magni G; Santarelli I; Natalini P; Ruggieri S; Vita A
    Eur J Biochem; 1977 May; 75(1):77-82. PubMed ID: 16754
    [No Abstract]   [Full Text] [Related]  

  • 19. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.
    Zimmermann FK; Scheel I
    Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The respirative breakdown of glucose by Saccharomyces cerevisiae: an assessment of a physiological state.
    Käppeli O; Arreguin M; Rieger M
    J Gen Microbiol; 1985 Jun; 131(6):1411-6. PubMed ID: 2995544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.