These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6246073)
1. Structural basis for the conformational states of nitrosyl hemoglobins M Saskatoon and M Milwaukee. Influence of distal histidine residues on proximal histidine-iron bonds. John ME; Waterman MR J Biol Chem; 1980 May; 255(10):4501-6. PubMed ID: 6246073 [No Abstract] [Full Text] [Related]
2. Ethylisocyanide equilibria of hemoglobins M Iwate, M Boston, M Hyde Park, M Saskatoon, and M Milwaukee-I in half-ferric and fully reduced states. Nishikura K; Sugita Y; Nagai M; Yoneyama Y J Biol Chem; 1975 Sep; 250(17):6679-85. PubMed ID: 1158877 [TBL] [Abstract][Full Text] [Related]
3. Influence of amino acid replacements in the heme pocket on the electron paramagnetic resonance spectra and absorption spectra of nitrosylhemoglobins M Iwate, M Boston, and M Milwaukee. Nagai K; Hori H; Morimoto H; Hayashi A; Taketa F Biochemistry; 1979 Apr; 18(7):1304-8. PubMed ID: 218618 [No Abstract] [Full Text] [Related]
4. Correlation between quaternary structure and ligand dissociation kinetics for fully liganded hemoglobin. Salhany JM; Ogawa S; Shulman RG Biochemistry; 1975 May; 14(10):2180-90. PubMed ID: 167803 [TBL] [Abstract][Full Text] [Related]
5. An infrared study of NO bonding to heme B and hemoglobin A. Evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds. Maxwell JC; Caughey WS Biochemistry; 1976 Jan; 15(2):388-96. PubMed ID: 1247525 [TBL] [Abstract][Full Text] [Related]
6. Structural characteristics of nitrosyl hemoglobins and their relation to ESR spectra. John ME; Waterman MR FEBS Lett; 1979 Oct; 106(1):219-22. PubMed ID: 227726 [No Abstract] [Full Text] [Related]
7. Nitrosyl haemoglobin: the NO-spin as a relaxation probe in the solvent-proton magnetic resonance experiment demonstrating the phosphate-induced widening of the haem-pocket. Benko B; Vuk-Pavlović S Biochem Biophys Res Commun; 1976 Aug; 71(4):1303-7. PubMed ID: 184787 [No Abstract] [Full Text] [Related]
8. Effect of polyanions on the spectroscopic properties of the nitric oxide derivative of ferrous dromedary (Camelus dromedarius) hemoglobin. Ascenzi P; Santucci R; Desideri A; Amiconi G J Inorg Biochem; 1988 Apr; 32(4):225-32. PubMed ID: 2454290 [TBL] [Abstract][Full Text] [Related]
9. Hemoglobin M: effect of the proximal or distal histidine replacement on circular dichroism in the visible region. Nagai M; Takama S; Yoneyama Y Biochem Biophys Res Commun; 1985 Apr; 128(2):689-94. PubMed ID: 3994720 [TBL] [Abstract][Full Text] [Related]
10. Electron nuclear double resonance (ENDOR) investigation on myoglobin and hemoglobin. Feher G; Isaacson RA; Scholes CP; Nagel R Ann N Y Acad Sci; 1973 Dec; 222():86-101. PubMed ID: 4361886 [No Abstract] [Full Text] [Related]
12. Unusual CO bonding geometry in abnormal subunits of hemoglobin M Boston and hemoglobin M Saskatoon. Nagai M; Yoneyama Y; Kitagawa T Biochemistry; 1991 Jul; 30(26):6495-503. PubMed ID: 2054349 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical studies of the relation between structure and function in hemoglobin Hiroshima (HC3 , histidine leads to aspartate). Imai K; Hamilton HB; Miyaji T; Shibata S Biochemistry; 1972 Jan; 11(1):114-21. PubMed ID: 4333193 [No Abstract] [Full Text] [Related]
14. Rates of nitric oxide dissociation from hemoglobin. Azizi F; Kielbasa JE; Adeyiga AM; Maree RD; Frazier M; Yakubu M; Shields H; King SB; Kim-Shapiro DB Free Radic Biol Med; 2005 Jul; 39(2):145-51. PubMed ID: 15964506 [TBL] [Abstract][Full Text] [Related]
15. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
16. Conformational isomers of nitrosyl-haemoglobin. An electron-spin-resonance study. Trittelvitz E; Sick H; Gersonde K Eur J Biochem; 1972 Dec; 31(3):578-84. PubMed ID: 4346523 [No Abstract] [Full Text] [Related]
17. A proton nuclear magnetic resonance investigation of proximal histidyl residues in human normal and abnormal hemoglobins. A probe for the heme pocket. Takahashi S; Lin AK; Ho C Biophys J; 1982 Jul; 39(1):33-40. PubMed ID: 7104448 [TBL] [Abstract][Full Text] [Related]
18. Characteristics in tyrosine coordinations of four hemoglobins M probed by resonance Raman spectroscopy. Nagai M; Yoneyama Y; Kitagawa T Biochemistry; 1989 Mar; 28(6):2418-22. PubMed ID: 2730874 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic reduction of hemoglobins M Milwaukee-1 and M Saskatoon by NADH-cytochrome b5 reductase and NADPH-flavin reductase purified from human erythrocytes. Nagai M; Yubisui T; Yoneyama Y J Biol Chem; 1980 May; 255(10):4599-602. PubMed ID: 7372598 [TBL] [Abstract][Full Text] [Related]
20. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme. Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]