These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6246194)

  • 1. Effects of oligomycin on glucose utilization and calcium transport in African trypanosomes.
    Miller PG; Klein RA
    J Gen Microbiol; 1980 Feb; 116(2):391-6. PubMed ID: 6246194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomycin-sensitivity of hexose-sugar catabolism in the bloodstream form of Trypanosoma brucei brucei.
    Kiaira JK; Njogu MR
    Biotechnol Appl Biochem; 1994 Dec; 20(3):347-56. PubMed ID: 7818804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the hexokinase/hexose transporter region in the glycosomal membrane of bloodstream Trypanosoma brucei by oligomycin and digitonin.
    Njogu MR; Kiaira JK
    Indian J Biochem Biophys; 2004 Dec; 41(6):329-32. PubMed ID: 22900363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of a peculiar pathway of glucose metabolism in infective forms of Trypanosoma brucei cultured from salivary glands of tsetse flies.
    Njogu RM; Nyindo M
    J Parasitol; 1981 Dec; 67(6):847-51. PubMed ID: 7328458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of the oligomycin-sensitive ATPase in bloodstream forms of Trypanosoma brucei brucei.
    Bienen EJ; Shaw MK
    Mol Biochem Parasitol; 1991 Sep; 48(1):59-66. PubMed ID: 1838138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypanosoma brucei brucei: the catabolism of glycolytic intermediates by digitonin-permeabilized bloodstream trypomastigotes and some aspects of regulation of anaerobic glycolysis.
    Kiaira JK; Njogu RM
    Int J Biochem; 1988; 20(10):1165-70. PubMed ID: 3248672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomycin sensitivity of the mitochondrial ATPase as a marker for fly transmissability and the presence of functional kinetoplast DNA in African trypanosomes.
    Opperdoes FR; Borst P; de Rijke D
    Comp Biochem Physiol B; 1976; 55(1):25-30. PubMed ID: 133016
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetics of methionine transport and metabolism by Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.
    Goldberg B; Rattendi D; Lloyd D; Yarlett N; Bacchi CJ
    Arch Biochem Biophys; 2000 May; 377(1):49-57. PubMed ID: 10775440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pentamidine transport and sensitivity in brucei-group trypanosomes.
    Damper D; Patton CL
    J Protozool; 1976 May; 23(2):349-56. PubMed ID: 6797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triazinyl derivatives that are potent inhibitors of glucose transport in Trypanosoma brucei.
    Bayele HK
    Parasitol Res; 2001 Nov; 87(11):911-4. PubMed ID: 11728014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ.
    Docampo R; Vercesi AE
    J Biol Chem; 1989 Jan; 264(1):108-11. PubMed ID: 2491844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative effects of salycylhydroxamic acid and glycerol on Trypanosoma brucei glycolysis in vitro and in vivo.
    Brohn FH; Clarkson AB
    Acta Trop; 1978 Mar; 35(1):23-33. PubMed ID: 24994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolism of carbohydrate by pleomorphic African trypanosomes.
    Flynn IW; Bowman IB
    Comp Biochem Physiol B; 1973 May; 45(1):25-42. PubMed ID: 4719992
    [No Abstract]   [Full Text] [Related]  

  • 14. An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei.
    Minagawa N; Yabu Y; Kita K; Nagai K; Ohta N; Meguro K; Sakajo S; Yoshimoto A
    Mol Biochem Parasitol; 1996 Oct; 81(2):127-36. PubMed ID: 8898329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Glut1 glucose transporter in response to inhibition of oxidative phosphorylation.
    Hamrahian AH; Zhang JZ; Elkhairi FS; Prasad R; Ismail-Beigi F
    Arch Biochem Biophys; 1999 Aug; 368(2):375-9. PubMed ID: 10441390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei.
    Bakker BM; Walsh MC; ter Kuile BH; Mensonides FI; Michels PA; Opperdoes FR; Westerhoff HV
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10098-103. PubMed ID: 10468568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrazolopyrimidine metabolism in African trypanosomes: metabolic similarities to Trypanosoma cruzi and Leishmania spp.
    Berens RL; Marr JJ; Brun R
    Mol Biochem Parasitol; 1980 Apr; 1(2):69-73. PubMed ID: 7003380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of S-adenosylmethionine cellular transport and protein methylation in Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.
    Goldberg B; Rattendi D; Lloyd D; Yarlett N; Bacchi CJ
    Arch Biochem Biophys; 1999 Apr; 364(1):13-8. PubMed ID: 10087160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar transport in Trypanosoma brucei: a suitable kinetic probe.
    Game S; Holman G; Eisenthal R
    FEBS Lett; 1986 Jan; 194(1):126-30. PubMed ID: 3940883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Glucose transport in Trypanosoma brucei. D-Glucose transport is the rate-limiting step of its metabolism.
    Gruenberg J; Sharma PR; Deshusses J
    Eur J Biochem; 1978 Sep; 89(2):461-9. PubMed ID: 710404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.