These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 6246219)

  • 1. Action-potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea.
    Gillette R; Gillette MU; Davis WJ
    J Neurophysiol; 1980 Mar; 43(3):669-85. PubMed ID: 6246219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological basis of feeding behavior in Tritonia diomedea. II. Neuronal mechanisms.
    Willows AO
    J Neurophysiol; 1980 Nov; 44(5):849-61. PubMed ID: 6255109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite.
    Gillette R; Kovac MP; Davis WJ
    Science; 1978 Feb; 199(4330):798-801. PubMed ID: 622571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of feeding motor output by paracerebral neurons in brain of Pleurobranchaea californica.
    Gillette R; Kovac MP; Davis WJ
    J Neurophysiol; 1982 May; 47(5):885-908. PubMed ID: 7086474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher order neurons in buccal ganglia of Pleurobranchaea elicit vomiting motor activity.
    McClellan AD
    J Neurophysiol; 1983 Sep; 50(3):658-70. PubMed ID: 6619912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral function of glutamatergic interneurons in the feeding system of Lymnaea: plateauing properties and synaptic connections with motor neurons.
    Brierley MJ; Staras K; Benjamin PR
    J Neurophysiol; 1997 Dec; 78(6):3386-95. PubMed ID: 9405552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food avoidance learning is accompanied by synaptic attenuation in identified interneurons controlling feeding behavior in Pleurobranchaea.
    Kovac MP; Matera EM; Volk PJ; Davis WJ
    J Neurophysiol; 1986 Sep; 56(3):891-905. PubMed ID: 3783224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor organization and generation of rhythmic feeding output in buccal ganglion of Pleurobranchaea.
    Siegler MV; Mpitsos GJ; Davis WJ
    J Neurophysiol; 1974 Nov; 37(6):1173-96. PubMed ID: 4373547
    [No Abstract]   [Full Text] [Related]  

  • 9. Conditional rhythmicity and synchrony in a bilateral pair of bursting motor neurons in Aplysia.
    Serrano GE; Miller MW
    J Neurophysiol; 2006 Oct; 96(4):2056-71. PubMed ID: 16738215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmentalization of information processing in an aplysia feeding circuit interneuron through membrane properties and synaptic interactions.
    Perrins R; Weiss KR
    J Neurosci; 1998 May; 18(10):3977-89. PubMed ID: 9570824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalization of pattern-initiation and motor functions in the B31 and B32 neurons of the buccal ganglia of Aplysia californica.
    Hurwitz I; Goldstein RS; Susswein AJ
    J Neurophysiol; 1994 Apr; 71(4):1514-27. PubMed ID: 8035232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central pattern generator interneurons are targets for the modulatory serotonergic cerebral giant cells in the feeding system of Lymnaea.
    Yeoman MS; Brierley MJ; Benjamin PR
    J Neurophysiol; 1996 Jan; 75(1):11-25. PubMed ID: 8822538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica. I. Excitatory inputs.
    Kovac MP; Davis WJ; Matera EM; Croll RP
    J Neurophysiol; 1983 Jun; 49(6):1517-38. PubMed ID: 6875636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the locomotor system of the pedal ganglia of the pteropodial mollusk on anatomically isolated neurons].
    ArshavskiÄ­ IuI; Gel'fand IM; Deliagina TG; OrlovskiÄ­ GN; Pavlova GA
    Neirofiziologiia; 1986; 18(6):756-63. PubMed ID: 3027592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular alkalinization potentiates slow inward current and prolonged bursting in a molluscan neuron.
    Gillette R
    J Neurophysiol; 1983 Feb; 49(2):509-15. PubMed ID: 6300347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine activates cerebral interneurons and feeding motor program in Limax maximus.
    King MS; Delaney K; Gelperin A
    J Neurobiol; 1987 Nov; 18(6):509-30. PubMed ID: 3694192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonspiking interneurons in walking system of the cockroach.
    Pearson KG; Fourtner CR
    J Neurophysiol; 1975 Jan; 38(1):33-52. PubMed ID: 162945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional spike backpropagation generates burst discharge in a sensory neuron.
    Lemon N; Turner RW
    J Neurophysiol; 2000 Sep; 84(3):1519-30. PubMed ID: 10980024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator.
    Getting PA; Dekin MS
    J Neurophysiol; 1985 Feb; 53(2):466-80. PubMed ID: 2984350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and structural correlates of cell size in paracerebral neurons of Pleurobranchaea californica.
    Kovac MP; Davis WJ; Matera E; Gillette R
    J Neurophysiol; 1982 May; 47(5):909-27. PubMed ID: 7086475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.