These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 6246504)

  • 1. Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids.
    Gonzalez-Ros JM; Paraschos A; Martinez-Carrion M
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1796-800. PubMed ID: 6246504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine receptor from Torpedo. Preferential solubilization and efficient reintegration into lipid vesicles.
    Paraschos A; Gonzalez-Ros JM; Martinez-Carrion M
    Biochim Biophys Acta; 1982 Oct; 691(2):249-60. PubMed ID: 7138859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of acetylcholine receptor function using purified receptor protein.
    Wu WC; Raftery MA
    Biochemistry; 1981 Feb; 20(4):694-701. PubMed ID: 7213603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purified acetylcholine receptor: its reconstitution to a chemically excitable membrane.
    Michaelson DM; Raftery MA
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4768-72. PubMed ID: 4531016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of a purified acetylcholine receptor.
    Michaelson DM; Duguid JR; Miller DL; Raftery MA
    J Supramol Struct; 1976; 4(3):419-25. PubMed ID: 1263516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of acetylcholine receptor isolated from Torpedo californica electroplax through the use of an easily removable detergent, beta-D-octylglucopyranoside.
    Gonzalez-Ros JM; Paraschos A; Farach MC; Martinez-Carrion M
    Biochim Biophys Acta; 1981 May; 643(2):407-20. PubMed ID: 7225389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation.
    Lindstrom J; Anholt R; Einarson B; Engel A; Osame M; Montal M
    J Biol Chem; 1980 Sep; 255(17):8340-50. PubMed ID: 6251053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional acetylcholine receptor from Torpedo marmorata in planar membranes.
    Schindler H; Quast U
    Proc Natl Acad Sci U S A; 1980 May; 77(5):3052-6. PubMed ID: 6930684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional equivalence of monomeric and dimeric forms of purified acetylcholine receptors from Torpedo californica in reconstituted lipid vesicles.
    Anholt R; Lindstrom J; Montal M
    Eur J Biochem; 1980 Aug; 109(2):481-7. PubMed ID: 6250843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of acetylcholine receptor channels by lipids in cholate solution and during reconstitution in vesicles.
    Anholt R; Lindstrom J; Montal M
    J Biol Chem; 1981 May; 256(9):4377-87. PubMed ID: 7194340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of alpha-bungarotoxin to isolated alpha subunit of the acetylcholine receptor of Torpedo californica: quantitative analysis with protein blots.
    Gershoni JM; Hawrot E; Lentz TL
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4973-7. PubMed ID: 6576369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient permeabilization induced osmotically in membrane vesicles from Torpedo electroplax: a mild procedure for trapping small molecules.
    West LK; Huang L
    Biochemistry; 1980 Sep; 19(19):4418-23. PubMed ID: 6996718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of polypeptide composition with functional events in acetylcholine receptor-enriched membranes from Torpedo californica.
    Moore HP; Hartig PR; Raftery MA
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6265-9. PubMed ID: 293719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers.
    Nelson N; Anholt R; Lindstrom J; Montal M
    Proc Natl Acad Sci U S A; 1980 May; 77(5):3057-61. PubMed ID: 6930685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membranes rich in acetylcholine receptor: characterization and reconstitution to excitable membranes from exogenous lipids.
    Schiebler W; Hucho F
    Eur J Biochem; 1978 Apr; 85(1):55-63. PubMed ID: 639824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of right-side-out, acetylcholine receptor enriched intact vesicles from Torpedo californica electroplaque membranes.
    Hartig PR; Raftery MA
    Biochemistry; 1979 Apr; 18(7):1146-50. PubMed ID: 427105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile anesthetic facilitation of in vitro desensitization of membrane-bound acetylcholine receptor from Torpedo californica.
    Young AP; Brown FF; Halsey MJ; Sigman DS
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4563-7. PubMed ID: 279934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of thio-group modifications on the ion permeability control and ligand binding properties of Torpedo californica acetylcholine receptor.
    Walker JW; Lukas RJ; McNamee MG
    Biochemistry; 1981 Apr; 20(8):2191-9. PubMed ID: 7236589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition.
    Ochoa EL; Dalziel AW; McNamee MG
    Biochim Biophys Acta; 1983 Jan; 727(1):151-62. PubMed ID: 6824649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent labeling of the acetylcholine receptor from Torpedo electric tissue with the channel blocker [3H]triphenylmethylphosphonium by ultraviolet irradiation.
    Muhn P; Hucho F
    Biochemistry; 1983 Jan; 22(2):421-5. PubMed ID: 6297549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.