These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 624675)

  • 21. A novel alkaline phosphatase-based isolation method allows characterization of intraepithelial lymphocytes from villi tip and crypt regions of murine small intestine.
    Kawabata S; Boyaka PN; Coste M; Fujihashi K; Hamada S; McGhee JR; Kiyono H
    Biochem Biophys Res Commun; 1997 Dec; 241(3):797-802. PubMed ID: 9434789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of the connective tissue in the digestive tract of the larval and metamorphosing Xenopus laevis.
    Ishizuya-Oka A; Shimozawa A
    Anat Anz; 1987; 164(2):81-93. PubMed ID: 3674459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of ischemic villus cell damage on crypt cell proliferation in the small intestine: evidence for a feedback control mechanism.
    Rijke RP; Hanson WR; Plaisier HM; Osborne JW
    Gastroenterology; 1976 Nov; 71(5):786-92. PubMed ID: 964570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Independence of fat abosorption and pinocytosis.
    Porter KR
    Fed Proc; 1969; 28(1):35-40. PubMed ID: 5763997
    [No Abstract]   [Full Text] [Related]  

  • 25. Morphological changes related to absorption of undigested protein in small intestinal epithelium cells of suckling pigs.
    Széky A; Rátz F; Nagy G
    Acta Vet Acad Sci Hung; 1976; 26(3):271-80. PubMed ID: 1032454
    [No Abstract]   [Full Text] [Related]  

  • 26. Shh/BMP-4 signaling pathway is essential for intestinal epithelial development during Xenopus larval-to-adult remodeling.
    Ishizuya-Oka A; Hasebe T; Shimizu K; Suzuki K; Ueda S
    Dev Dyn; 2006 Dec; 235(12):3240-9. PubMed ID: 17016847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Enterocyte changes in the small intestine at various stages of differentiation and the removal of functional loading].
    Grebenshchikova VI; Chentsov IuS; Omran M
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1978; (12):66-80. PubMed ID: 728503
    [No Abstract]   [Full Text] [Related]  

  • 28. [Identification and classification of lysozyme-expressing cells in the mouse small intestinal crypt and their correlation with the morphology of secretory granules and labeling density of immunogold].
    Satot T; Kawamoto E; Yamada J
    Kaibogaku Zasshi; 2009 Sep; 84(3):83-91. PubMed ID: 19803390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utrastructure of the cement gland of Xenopus laevis.
    Picard JJ
    J Morphol; 1976 Feb; 148(2):193-208. PubMed ID: 1267966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sonic hedgehog and bone morphogenetic protein-4 signaling pathway involved in epithelial cell renewal along the radial axis of the intestine.
    Ishizuya-Oka A; Hasebe T
    Digestion; 2008; 77 Suppl 1():42-7. PubMed ID: 18204261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Participation of the goblet cells of the small intestine in the excretion of Fe, Zn and Pb cations].
    Bauman VK; Gaĭlite BE; Kalntsiema VKh
    Tsitologiia; 1987 Nov; 29(11):1284-9. PubMed ID: 3438935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vimentin-positive cells in the villus epithelium of the rabbit small intestine.
    Iwatsuki H; Ogawa C; Suda M
    Histochem Cell Biol; 2002 Apr; 117(4):363-70. PubMed ID: 11976909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Electron microscopic demonstration of mucoproteins in mesonephron bottle cells of the Xenopus laevis Daudin using phosphostungstic acid staining].
    Jonas L; Spannhof L
    Acta Histochem; 1971; 41(2):185-92. PubMed ID: 4113742
    [No Abstract]   [Full Text] [Related]  

  • 34. Cytokeratin expression in epithelial cells isolated from the crypt and villus regions of the rodent small intestine.
    Flint N; Pemberton PW; Lobley RW; Evans GS
    Epithelial Cell Biol; 1994 Jan; 3(1):16-23. PubMed ID: 7514933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The mucosa of the small intestine: development of the cellular lipid composition during enterocyte differentiation and postnatal maturation].
    Alessandri JM; Arfi TS; Thieulin C
    Reprod Nutr Dev; 1990; 30(5):551-76. PubMed ID: 2291805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peroxidase activity in the epithelium of the digestive tract of the bullfrog, Rana catesbeiana.
    Sugimoto K; Ichikawa Y; Nakamura I
    J Exp Zool; 1985 Feb; 233(2):209-19. PubMed ID: 2982995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastructural observations of the tunica muscularis in the small intestine of Xenopus laevis, with special reference to the interstitial cells of Cajal.
    Miyamoto-Kikuta S; Komuro T
    Cell Tissue Res; 2007 May; 328(2):271-9. PubMed ID: 17252245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apoptosis and functional changes of dipeptide transporter (PepT1) in the rat small intestine after traumatic brain injury.
    Hang CH; Shi JX; Sun BW; Li JS
    J Surg Res; 2007 Jan; 137(1):53-60. PubMed ID: 17081567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid absorption in newborn rat intestine.
    Ferlatte MI; Zeman FJ
    Dev Biol; 1977 May; 57(1):1-14. PubMed ID: 863100
    [No Abstract]   [Full Text] [Related]  

  • 40. [Intestinal epithelial cells].
    Shimizu M; Satsu H; Ogawa N
    Nihon Rinsho; 1997 Oct; 55 Suppl():225-9. PubMed ID: 9392114
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.