These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6246845)

  • 1. Oxygen utilization by Lactobacillus plantarum. II. Superoxide and superoxide dismutation.
    Götz F; Elstner EF; Sedewitz B; Lengfelder E
    Arch Microbiol; 1980 Apr; 125(3):215-20. PubMed ID: 6246845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions.
    Götz F; Sedewitz B; Elstner EF
    Arch Microbiol; 1980 Apr; 125(3):209-14. PubMed ID: 7377904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum.
    Archibald FS; Fridovich I
    J Bacteriol; 1981 Jan; 145(1):442-51. PubMed ID: 6257639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide dismutase activity in some strains of lactobacilli: induction by manganese.
    González SN; Apella MC; Romero N; Pesce de Ruiz Holgado AA; Oliver G
    Chem Pharm Bull (Tokyo); 1989 Nov; 37(11):3026-8. PubMed ID: 2632048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen metabolism in Lactobacillus plantarum.
    Gregory EM; Fridovich I
    J Bacteriol; 1974 Jan; 117(1):166-9. PubMed ID: 4808898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen dependent lactate utilization by Lactobacillus plantarum.
    Murphy MG; O'Connor L; Walsh D; Condon S
    Arch Microbiol; 1985 Feb; 141(1):75-9. PubMed ID: 3994484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen.
    Amanatidou A; Bennik MH; Gorris LG; Smid EJ
    Arch Microbiol; 2001 Jul; 176(1-2):79-88. PubMed ID: 11479706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen metabolism of catalase-negative and catalase-positive strains of Lactobacillus plantarum.
    Yousten AA; Johnson JL; Salin M
    J Bacteriol; 1975 Jul; 123(1):242-7. PubMed ID: 1141195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mimic of superoxide dismutase activity based upon desferrioxamine B and manganese(IV).
    Darr D; Zarilla KA; Fridovich I
    Arch Biochem Biophys; 1987 Nov; 258(2):351-5. PubMed ID: 2823713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of superoxide generation on rat heart mitochondrial pyruvate utilization.
    Guarnieri C; Muscari C; Ceconi C; Flamigni F; Caldarera CM
    J Mol Cell Cardiol; 1983 Dec; 15(12):859-62. PubMed ID: 6319722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress.
    Lee J; Hwang KT; Heo MS; Lee JH; Park KY
    J Med Food; 2005; 8(3):299-304. PubMed ID: 16176138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese ions, oxidation reactions and the superoxide radical.
    Halliwell B
    Neurotoxicology; 1984; 5(1):113-7. PubMed ID: 6326006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity.
    Tseng HJ; Srikhanta Y; McEwan AG; Jennings MP
    Mol Microbiol; 2001 Jun; 40(5):1175-86. PubMed ID: 11401721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen Enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamycin SV to rifamycin S catalyzed by manganous ions: the role of superoxide.
    Kono Y
    J Biochem; 1982 Jan; 91(1):381-95. PubMed ID: 6279585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria.
    Archibald FS; Fridovich I
    J Bacteriol; 1981 Jun; 146(3):928-36. PubMed ID: 6263860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin.
    Abreu IA; Saraiva LM; Carita J; Huber H; Stetter KO; Cabelli D; Teixeira M
    Mol Microbiol; 2000 Oct; 38(2):322-34. PubMed ID: 11069658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactobacillus sanfranciscensis CB1: manganese, oxygen, superoxide dismutase and metabolism.
    De Angelis M; Gobbetti M
    Appl Microbiol Biotechnol; 1999 Mar; 51(3):358-63. PubMed ID: 10222585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding.
    Ibrahim HR; Hoq MI; Aoki T
    Int J Biol Macromol; 2007 Dec; 41(5):631-40. PubMed ID: 17919719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for catalytic dismutation of superoxide by cobalt(II) derivatives of bovine superoxide dismutase in aqueous solution as studied by pulse radiolysis.
    O'Neill P; Fielden EM; Cocco D; Rotilio G; Calabrese L
    Biochem J; 1982 Jul; 205(1):181-7. PubMed ID: 6289808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.