These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6247488)

  • 41. Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle.
    Clausen T; Everts ME; Kjeldsen K
    J Physiol; 1987 Jul; 388():163-81. PubMed ID: 2443689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Binding of [3H]saxitoxin to the voltage-dependent Na channels and inhibition of 22Na influx in bovine adrenal medullary cells.
    Wada A; Arita M; Kobayashi H; Izumi F
    Neuroscience; 1987 Oct; 23(1):327-31. PubMed ID: 2446205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and mu-conotoxins.
    Moczydlowski E; Olivera BM; Gray WR; Strichartz GR
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5321-5. PubMed ID: 2425365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of two sodium channel subtypes in chick heart and brain.
    Rogart RB; Regan LJ; Dziekan LC; Galper JB
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1106-10. PubMed ID: 6302670
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Actions of chiriquitoxin on frog skeletal muscle fibers and implications for the tetrodotoxin/saxitoxin receptor.
    Yang L; Kao CY
    J Gen Physiol; 1992 Oct; 100(4):609-22. PubMed ID: 1334120
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuroanatomical distribution and binding properties of saxitoxin sites in the rat and turtle CNS.
    Xia Y; Haddad GG
    J Comp Neurol; 1993 Apr; 330(3):363-80. PubMed ID: 8468412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tonic and phasic guanidinium toxin-block of skeletal muscle Na channels expressed in Mammalian cells.
    Moran O; Picollo A; Conti F
    Biophys J; 2003 May; 84(5):2999-3006. PubMed ID: 12719231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins.
    Favre I; Moczydlowski E; Schild L
    J Gen Physiol; 1995 Aug; 106(2):203-29. PubMed ID: 8537816
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes.
    Renaud JF; Kazazoglou T; Lombet A; Chicheportiche R; Jaimovich E; Romey G; Lazdunski M
    J Biol Chem; 1983 Jul; 258(14):8799-805. PubMed ID: 6306000
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel.
    Lipkind GM; Fozzard HA
    Biophys J; 1994 Jan; 66(1):1-13. PubMed ID: 8130328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of age, potassium depletion and denervation on specific displaceable [3H]ouabain binding in rat skeletal muscle in vivo.
    Clausen T; Hansen O; Kjeldsen K; Nørgaard A
    J Physiol; 1982 Dec; 333():367-81. PubMed ID: 6304285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Saxitoxin binding to sodium channels in head extracts from wild-type and tetrodotoxin-sensitive strains of Drosophila melanogaster.
    Gitschier J; Strichartz GR; Hall LM
    Biochim Biophys Acta; 1980 Jan; 595(2):291-303. PubMed ID: 6766315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain.
    Talvenheimo JA; Tamkun MM; Catterall WA
    J Biol Chem; 1982 Oct; 257(20):11868-71. PubMed ID: 6288700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Saxitoxin and tetrodotoxin. Electrostatic effects on sodium channel gating current in crayfish axons.
    Heggeness ST; Starkus JG
    Biophys J; 1986 Mar; 49(3):629-43. PubMed ID: 2421792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of skeletal analogues of saxitoxin derivatives and evaluation of their inhibitory activity on sodium ion channels Na(V)1.4 and Na(V)1.5.
    Shinohara R; Akimoto T; Iwamoto O; Hirokawa T; Yotsu-Yamashita M; Yamaoka K; Nagasawa K
    Chemistry; 2011 Oct; 17(43):12144-52. PubMed ID: 21922571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site-directed mutagenesis of the putative pore region of the rat IIA sodium channel.
    Kontis KJ; Goldin AL
    Mol Pharmacol; 1993 Apr; 43(4):635-44. PubMed ID: 8386312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pharmacological and biochemical properties of saxiphilin, a soluble saxitoxin-binding protein from the bullfrog (Rana catesbeiana).
    Mahar J; Lukács GL; Li Y; Hall S; Moczydlowski E
    Toxicon; 1991; 29(1):53-71. PubMed ID: 1851343
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sodium channel and sodium pump in normal and pathological muscles from patients with myotonic muscular dystrophy and lower motor neuron impairment.
    Desnuelle C; Lombet A; Serratrice G; Lazdunski M
    J Clin Invest; 1982 Feb; 69(2):358-67. PubMed ID: 6276440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Size characteristics of the solubilized sodium channel saxitoxin binding site from mammalian sarcolemma.
    Barchi RL; Murphy LE
    Biochim Biophys Acta; 1980 Apr; 597(2):391-8. PubMed ID: 6245695
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation of membranes enriched in "tetrodotoxin-insensitive" saxitoxin-binding sites from mammalian ventricle. Receptor solubilization.
    Doyle DD; Winter A
    J Biol Chem; 1989 Mar; 264(7):3811-7. PubMed ID: 2537291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.