These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6247488)

  • 61. Periodate treatment reduces the tetrodotoxin-sensitivity of voltage-gated Na+ channels.
    Rack M
    Biochim Biophys Acta; 1988 Mar; 939(1):47-51. PubMed ID: 2450584
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Saxitoxin binding to synaptosomes, membranes, and solubilized binding sites from rat brain.
    Krueger BK; Ratzlaff RW; Strichartz GR; Blaustein MP
    J Membr Biol; 1979 Nov; 50(3-4):287-310. PubMed ID: 513116
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Acetylcholine receptors and sodium channels in denervated and botulinum-toxin-treated adult rat muscle.
    Bambrick L; Gordon T
    J Physiol; 1987 Jan; 382():69-86. PubMed ID: 2442368
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles.
    Dulhunty AF; Gage PW
    J Physiol; 1985 Jan; 358():75-89. PubMed ID: 3981474
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells.
    Waechter CJ; Schmidt JW; Catterall WA
    J Biol Chem; 1983 Apr; 258(8):5117-23. PubMed ID: 6300116
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Competitive binding interaction between Zn2+ and saxitoxin in cardiac Na+ channels. Evidence for a sulfhydryl group in the Zn2+/saxitoxin binding site.
    Schild L; Moczydlowski E
    Biophys J; 1991 Mar; 59(3):523-37. PubMed ID: 1646656
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
    Akaike N; Hirata A; Kiyohara T; Oyama Y
    J Physiol; 1983 Aug; 341():245-55. PubMed ID: 6137559
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inaction of saxitoxin-oximes on the sodium channel of frog skeletal muscle fibers.
    Hu SL; Kao CY; Koehn FE; Schnoes HK
    Toxicon; 1987; 25(2):159-65. PubMed ID: 2437671
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres.
    Pappone PA
    J Physiol; 1980 Sep; 306():377-410. PubMed ID: 6257898
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expression of saxiphilin in insect cells and localization of the saxitoxin-binding site to the C-terminal domain homologous to the C-lobe of transferrins.
    Morabito MA; Llewellyn LE; Moczydlowski EG
    Biochemistry; 1995 Oct; 34(40):13027-33. PubMed ID: 7548061
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential effects of sulfhydryl reagents on saxitoxin and tetrodotoxin block of voltage-dependent Na channels.
    Kirsch GE; Alam M; Hartmann HA
    Biophys J; 1994 Dec; 67(6):2305-15. PubMed ID: 7696471
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tetrodotoxin binding to normal depolarized frog muscle and the conductance of a single sodium channel.
    Almers W; Levinson SR
    J Physiol; 1975 May; 247(2):483-509. PubMed ID: 1080198
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell. Difference in functional properties and sequential appearance during rat skeletal myogenesis.
    Frelin C; Vigne P; Lazdunski M
    J Biol Chem; 1983 Jun; 258(12):7256-9. PubMed ID: 6305931
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of denervation on sodium, potassium and [3H]ouabain binding in muscles of normal and potassium-depleted rats.
    Clausen T; Kjeldsen K; Nørgaard A
    J Physiol; 1983 Dec; 345():123-34. PubMed ID: 6663495
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane.
    Henderson R; Ritchie JM; Strichartz GR
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3936-40. PubMed ID: 4530274
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On the mechanism by which saxitoxin binds to and blocks sodium channels.
    Strichartz G; Rando T; Hall S; Gitschier J; Hall L; Magnani B; Bay CH
    Ann N Y Acad Sci; 1986; 479():96-112. PubMed ID: 2434011
    [No Abstract]   [Full Text] [Related]  

  • 77. Expression of sodium channels with different saxitoxin affinity during rat forebrain development.
    Villegas R; Castillo C; Póo ME; Schnell S; Piernavieja C; Balbi D; Villegas GM
    Brain Res Dev Brain Res; 1994 Aug; 81(1):26-40. PubMed ID: 7805284
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Stabilization of a sodium channel state with high affinity for saxitoxin by intramolecular cross-linking. Evidence for allosteric effects of saxitoxin binding.
    Tejedor FJ; McHugh E; Catterall WA
    Biochemistry; 1988 Apr; 27(7):2389-97. PubMed ID: 2454655
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Saxitoxin blocks batrachotoxin-modified sodium channels in the node of Ranvier in a voltage-dependent manner.
    Rando TA; Strichartz GR
    Biophys J; 1986 Mar; 49(3):785-94. PubMed ID: 2421797
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Actions of epimers of 12-(OH)-reduced saxitoxin and of 11-(OSO3)-saxitoxin on squid axon.
    Kao CY; Kao PN; James-Kracke MR; Koehn FE; Wichmann CF; Schnoes HK
    Toxicon; 1985; 23(4):647-55. PubMed ID: 2414863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.