BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6247646)

  • 1. [Pyridoxalphosphate-modified derivatives of cytochrome c. Mono- and disubstituted derivatives: characteristics and effect on electron transport in cytochrome c-depleted mitochondria].
    Atanasov BP; Kosekova GP; Mitovska MI; Khristova PK; Dancheva KI
    Mol Biol (Mosk); 1980; 14(2):307-15. PubMed ID: 6247646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridoxal phosphate modified cytochromes c. Identification and electron transfer properties.
    Atanasov BP; Mitovska MI; Mancheva IN; Kossekova GP; Tchorbanov BP; Christova P; Dancheva KI
    Biochim Biophys Acta; 1984 Jun; 765(3):329-39. PubMed ID: 6329273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of tyrosine-74-modified cytochrome C on electron transfer in Keilin-Hartree submitochondrial particles].
    Mitovska M; Kosekova G; Dancheva K; Postnikova G; Gorbunova N
    Eksp Med Morfol; 1981; 20(3):129-34. PubMed ID: 6273116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of pyridoxal phosphate modified cytochromes c with mitoplasts.
    Mitovska MI; Dancheva KI
    Int J Biochem; 1989; 21(12):1297-301. PubMed ID: 2558924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pyridoxal phosphate on the formation of cytochrome c1-c and cytochrome c-cytochrome oxidase complexes.
    Kim CH; King TE
    Biochem Int; 1991 May; 24(2):255-62. PubMed ID: 1656982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of di-substituted cytochrome C pyridoxal phosphate on oxidative phosphorylation in cytochrome C-deficient liver mitochondria].
    Kosekova G; Mitovska M; Minkov I; Dancheva K; Atanasov B
    Eksp Med Morfol; 1981; 20(1):12-7. PubMed ID: 6262043
    [No Abstract]   [Full Text] [Related]  

  • 7. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate cytochrome c derivatives.
    Kotlyar AB; Borovok N; Hazani M
    Biochemistry; 1997 Dec; 36(50):15828-33. PubMed ID: 9398314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electron transfer in hemoproteins. VIII. Influence of ionic strength on the rate of reduction of ferricytochrome c by oxymyoglobin derivatives, chemically modified at histidine residues].
    Postnikova GB; Shliapnikova EA; Atanasov BP; Vol'kenshteĭn
    Mol Biol (Mosk); 1982; 16(1):104-16. PubMed ID: 6280031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c.
    Seetharaman R; White SP; Rivera M
    Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pyridoxal 5'-phosphate on the function of the purified mitochondrial tricarboxylate transport protein.
    Gremse DA; Dean B; Kaplan RS
    Arch Biochem Biophys; 1995 Jan; 316(1):215-9. PubMed ID: 7840619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH.
    La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE
    Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge interactions of cytochrome c with cytochrome c oxidase.
    Mitovska MI; Dancheva KI; Atanasov BP
    Int J Biochem; 1984; 16(10):1059-64. PubMed ID: 6097487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectively immobilized cytochrome c as an effective affinity ligand for electron transfer proteins.
    Akhrem AA; Gilevich SN; Shkumatov VM; Chashchin VL
    Biomed Biochim Acta; 1984; 43(2):165-77. PubMed ID: 6329161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-sensitive binding of cytochrome c to the inner mitochondrial membrane. Implications for the participation of the protein in cell respiration and apoptosis.
    Kawai C; Pessoto FS; Rodrigues T; Mugnol KC; Tórtora V; Castro L; Milícchio VA; Tersariol IL; Di Mascio P; Radi R; Carmona-Ribeiro AM; Nantes IL
    Biochemistry; 2009 Sep; 48(35):8335-42. PubMed ID: 19650668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chemical modification of ferricytochrome c by N-(2,2',5,5'-tetramethyl-3-carboxypyrroline-1-oxyl)-imidazole].
    Postnikova GB; Gorbunova NP; Sukhomudrenko AG
    Mol Biol (Mosk); 1978; 12(5):1112-21. PubMed ID: 216905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functions of cytochrome c in regulation of electron transfer and protein folding.
    Ramasarma T; Rasheed BK; Vijaya S; Puranam RS; Shivaswamy V; Gaikwad AS; Kurup CK
    Indian J Biochem Biophys; 1992 Apr; 29(2):173-8. PubMed ID: 1328035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite.
    Batthyány C; Souza JM; Durán R; Cassina A; Cerveñansky C; Radi R
    Biochemistry; 2005 Jun; 44(22):8038-46. PubMed ID: 15924423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of anionic complexes on cytochrome c oxidation by cytochrome c oxidase].
    Mitovska M; Paneva R; Dancheva K
    Eksp Med Morfol; 1993; 31(1-2):16-22. PubMed ID: 8258312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electron transport in hemoproteins. VIII. The effect of chemical modification of ferricytochrome C on the rate of its reduction by oxymyoglobin].
    Postnikova GB; Gorbunova NP; Atanasov BP
    Mol Biol (Mosk); 1984; 18(1):234-43. PubMed ID: 6323975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.