These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 6247883)
1. Membrane cooperative enzymes as a tool for the investigation of membrane structure and related phenomena. Farías RN Adv Lipid Res; 1980; 17():251-82. PubMed ID: 6247883 [No Abstract] [Full Text] [Related]
2. Human growth hormone active site for membrane cooperative enzymes. Farías RN; Uñates LE; Moreno H; Peña C; Paladini AC Biochem Biophys Res Commun; 1978 Nov; 85(1):85-91. PubMed ID: 154327 [No Abstract] [Full Text] [Related]
3. The effect of membrane lipid composition on the permeability of membranes to Ca2+. Holmes RP; Mahfouz M; Travis BD; Yoss NL; Keenan MJ Ann N Y Acad Sci; 1983; 414():44-56. PubMed ID: 6142672 [No Abstract] [Full Text] [Related]
4. Effect of dietary fats on erythrocyte membrane lipid composition and membrane-bound enzyme activities. Vajreswari A; Narayanareddy K Metabolism; 1992 Apr; 41(4):352-8. PubMed ID: 1313527 [TBL] [Abstract][Full Text] [Related]
5. Membrane fluidity, cholesterol and allosteric transitions of membrane-bound Mg2+-ATPase, (Na+ + K+)-ATPase and acetylcholinesterase from rat erythrocytes. Bloj B; Morero RD; Farías RN FEBS Lett; 1973 Dec; 38(1):101-5. PubMed ID: 4272543 [No Abstract] [Full Text] [Related]
6. Membrane lipid fatty acids and regulation of membrane-bound enzymes. Allosteric behaviour of erythrocyte Mg 2+ -ATPase, (Na + +K + )-ATPase and acetylcholinesterase from rats fed different fat-supplemented diets. Bloj B; Morero RD; Farías RN; Trucco RE Biochim Biophys Acta; 1973 Jun; 311(1):67-79. PubMed ID: 4268761 [No Abstract] [Full Text] [Related]
7. [The role of proteins of membrane skeleton of non-nucleated erythrocytes in the functioning of membrane enzymes]. Kazennov AM; Maslova MN; Shalabodov AD Dokl Akad Nauk SSSR; 1990; 312(1):223-6. PubMed ID: 2170091 [No Abstract] [Full Text] [Related]
8. Hormone action and membrane fluidity: effect of insulin and cortisol on the Hill coefficients of rat erythrocyte membrane-bound acetylcholinesterase and (Na+ + K+)-ATPase. Massa EM; Morero RD; Bloj B; Farías RN Biochem Biophys Res Commun; 1975 Sep; 66(1):115-22. PubMed ID: 126062 [No Abstract] [Full Text] [Related]
9. The role of membrane-associated enzymes in regulation of erythrocyte shape and deformability. Mohandas N; Shohet SB Clin Haematol; 1981 Feb; 10(1):223-37. PubMed ID: 6260407 [No Abstract] [Full Text] [Related]
10. Abnormal membrane fluidity and acetylcholinesterase activity in erythrocytes from insulin-dependent diabetic patients. Testa I; Rabini RA; Fumelli P; Bertoli E; Mazzanti L J Clin Endocrinol Metab; 1988 Dec; 67(6):1129-33. PubMed ID: 2848052 [TBL] [Abstract][Full Text] [Related]
11. Diabetes mellitus and red blood cell aging: a structural and functional study. Mazzanti L; Rabini RA; Staffolani R; Faloia E; De Pirro R; Pugnaloni A; Littarru GP; Biagini G Adv Exp Med Biol; 1991; 307():85-9. PubMed ID: 1666819 [No Abstract] [Full Text] [Related]
12. A protein inhibitor of erythrocyte membrane (Ca2+ + Mg2+)-ATPase. Lee KS; Au KS Biochim Biophys Acta; 1983 Jan; 742(1):54-62. PubMed ID: 6130792 [No Abstract] [Full Text] [Related]
13. [Changes in Na+, K+-ATPase and acetylcholinesterase activity in red cell membranes after freezing-thawing]. Lugovoĭ VI; Guseva NP Ukr Biokhim Zh (1978); 1981; 53(3):55-8. PubMed ID: 6266109 [TBL] [Abstract][Full Text] [Related]
14. [Changes in acetylcholinesterase and ATPase activity and certain structural features of the erythrocyte membrane in experimental myocardial ischemia]. Chernukh AM; Kopteva LA; Shevchenko AS Biull Eksp Biol Med; 1980 Sep; 90(9):270-2. PubMed ID: 6252988 [TBL] [Abstract][Full Text] [Related]
15. Increased sodium plus potassium adenosine triphosphatase activity in erythrocyte membranes in Huntington's disease. Butterfield DA; Oeswein JQ; Prunty ME; Hisle KC; Markesbery WR Ann Neurol; 1978 Jul; 4(1):60-2. PubMed ID: 211930 [TBL] [Abstract][Full Text] [Related]
16. Response of rat heart membranes and associated ion-transporting ATPases to dietary lipid. Abeywardena MY; McMurchie EJ; Russell GR; Sawyer WH; Charnock JS Biochim Biophys Acta; 1984 Sep; 776(1):48-59. PubMed ID: 6089884 [TBL] [Abstract][Full Text] [Related]
17. Pesticide action and membrane fluidity. Allosteric behavior of rat erythrocyte membrane-bound acetylcholinesterase in the presence of organophosphorous compounds. Domenech CE; Machado de Domenech EE; Balegno HF FEBS Lett; 1977 Mar; 74(2):243-6. PubMed ID: 849789 [No Abstract] [Full Text] [Related]
18. Effect of a hyperlipidic diet on lipid composition, fluidity, and (Na+-K+)ATPase activity of rat erythrocyte membranes. Bordoni A; Biagi PL; Parenti Castelli G; Hrelia S; Rossi CA; Lercker G; Izpisua JC; Barber T; Cabo J; Lenaz G Membr Biochem; 1989; 8(1):11-8. PubMed ID: 2554096 [TBL] [Abstract][Full Text] [Related]
19. Membrane-bound enzymes of erythrocytes in human muscular dystrophy: (Na+ + K+-ATPase, Ca2+-ATPase, K+- and Ca2+-p-nitrophenylphosphatase. Ruitenbeek W J Neurol Sci; 1979 Mar; 41(1):71-80. PubMed ID: 220389 [No Abstract] [Full Text] [Related]
20. ATPase and acetylcholinesterase activities in erythrocyte membranes after incubation with glucose and in streptozotocin diabetic rats. Henschel S; Henschel L; Lober M; Krantz S Exp Clin Endocrinol; 1988 Mar; 91(1):20-6. PubMed ID: 2836222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]