These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 6248040)

  • 1. Light-triggered proton movements in retinal discs from the frog.
    Maloney PC; Lam DM; Wilson TH
    Biochem Biophys Res Commun; 1980 Mar; 93(2):420-6. PubMed ID: 6248040
    [No Abstract]   [Full Text] [Related]  

  • 2. Long-lived photoproducts of rhodopsin in the retina of the frog.
    Gyllenberg G; Reuter T; Sippel H
    Vision Res; 1974 Dec; 14(12):1349-57. PubMed ID: 4548594
    [No Abstract]   [Full Text] [Related]  

  • 3. Relationship of the light-induced proton uptake in bovine retinal outer segment fragments to triton-induced membrane disruption and to volume changes.
    McConnell DG
    J Biol Chem; 1975 Mar; 250(5):1898-906. PubMed ID: 234469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efflux of potassium from the isolated frog retina: a study of the photic effect.
    Cavaggioni A; Sorbi RT; Turini S
    J Physiol; 1972 Apr; 222(2):427-45. PubMed ID: 4537516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The increase in sensitivity following light illumination in frog photoreceptors.
    Azuma M; Azuma K
    Vision Res; 1979; 19(10):1171-5. PubMed ID: 317766
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of strong illumination on the ion efflux from the isolated discs of frog photoreceptors.
    Sorbi RT; Cavaggioni A
    Biochim Biophys Acta; 1975 Jul; 394(4):577-85. PubMed ID: 1080054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of hyposorhodopsin in frog retina.
    Horiuchi S; Tokunaga F; Yoshizawa T
    Biochim Biophys Acta; 1978 Aug; 503(2):402-4. PubMed ID: 308376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rate of rhodopsin phosphorylation in isolated rentinas of frog and cattle.
    Kühn H; Bader S
    Biochim Biophys Acta; 1976 Mar; 428(1):13-8. PubMed ID: 1083249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of rhodopsin regeneration in the bullfrog eye by metabolic inhibitors.
    Ratzlaff KO
    Vision Res; 1975 Jan; 15(1):73-7. PubMed ID: 1079380
    [No Abstract]   [Full Text] [Related]  

  • 10. Dark-adaptation of the aspartate-isolated rod receptor potential of the frog retina: threshold measurements.
    Donner KO; Hemilä SO
    J Physiol; 1979 Feb; 287():93-106. PubMed ID: 311829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of rhodopsin and retinochrome in the squid retina.
    Hara T; Hara R
    J Gen Physiol; 1976 Jun; 67(6):791-805. PubMed ID: 6620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The respiration of the isolated rod outer limb of the frog retina.
    HUBBARD R
    J Gen Physiol; 1954 Jan; 37(3):373-9. PubMed ID: 13118107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taurine biosynthesis in frog retina: effects of light and dark adaptations.
    Nishimura C; Ida S; Kuriyama K
    J Neurosci Res; 1983; 9(1):59-67. PubMed ID: 6601194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-sensitive swelling of isolated frog rod outer segments as an in vitro assay for visual transduction and dark adaptation.
    Bownds D; Brodie AE
    J Gen Physiol; 1975 Oct; 66(4):407-25. PubMed ID: 52687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of the late receptor potential: an excitation-inhibition phenomenon.
    Sillman AJ; Owen WG; Fernandez HR
    Vision Res; 1972 Sep; 12(9):1519-31. PubMed ID: 4538509
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium effects on frog retinal cyclic guanosine 3', 5'-monophosphate levels and their light-initiated rate of decay.
    Kilbride P
    J Gen Physiol; 1980 Apr; 75(4):457-65. PubMed ID: 6247421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-induced free radical oxidation of membrane lipids in photoreceptors of frog retina.
    Kagan VE; Shvedova AA; Novikov KN; Kozlov YP
    Biochim Biophys Acta; 1973 Nov; 330(1):76-9. PubMed ID: 4543474
    [No Abstract]   [Full Text] [Related]  

  • 18. Differential effects of light and dark adaptations on function and metabolism of retinal taurine and gamma-aminobutyric acid (GABA).
    Kuriyama K; Ida S; Nishimura C
    Adv Exp Med Biol; 1981; 139():221-38. PubMed ID: 6977268
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo influence of light or darkness on the GABA system in the retina of the frog (Rana pipiens).
    Graham LT; Baxter CF; Lolley RN
    Brain Res; 1970 Jun; 20(3):379-88. PubMed ID: 5433095
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrogen ion effects of the vertebrate photoreceptor. The pK's of ionizable groups affecting cell permeability.
    Gedney C; Ostroy SE
    Arch Biochem Biophys; 1978 May; 188(1):105-13. PubMed ID: 28082
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.