BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 6248123)

  • 1. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs.
    Kalyanaraman B; Perez-Reyes E; Mason RP
    Biochim Biophys Acta; 1980 Jun; 630(1):119-30. PubMed ID: 6248123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen.
    Komiyama T; Kikuchi T; Sugiura Y
    J Pharmacobiodyn; 1986 Aug; 9(8):651-64. PubMed ID: 3023600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photogeneration of superoxide by adriamycin and daunomycin. An electron spin resonance and spin trapping study.
    Carmichael AJ; Mossoba MM; Riesz P
    FEBS Lett; 1983 Dec; 164(2):401-5. PubMed ID: 6317461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of free radicals of quinone group-containing anti-cancer chemicals in NADPH-microsome system as evidenced by initiation of sulfite oxidation.
    Handa K; Sato S
    Gan; 1975 Feb; 66(1):43-7. PubMed ID: 239881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase.
    Komiyama T; Kikuchi T; Sugiura Y
    Biochem Pharmacol; 1982 Nov; 31(22):3651-6. PubMed ID: 6295407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox activities of antitumor anthracyclines determined by microsomal oxygen consumption and assays for superoxide anion and hydroxyl radical generation.
    Peters JH; Gordon GR; Kashiwase D; Lown JW; Yen SF; Plambeck JA
    Biochem Pharmacol; 1986 Apr; 35(8):1309-23. PubMed ID: 3008758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron spin resonance study on the mode of generation of free radicals of daunomycin, adriamycin, and carboquone in NAD(P)H-microsome system.
    Sato S; Iwaizumi M; Handa K; Tamura Y
    Gan; 1977 Oct; 68(5):603-8. PubMed ID: 22473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding mode of chemically activated semiquinone free radicals from quinone anticancer agents to DNA.
    Sinha BK; Chignell CF
    Chem Biol Interact; 1979 Dec; 28(2-3):301-8. PubMed ID: 549745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic activation and binding of adriamycin to nuclear DNA.
    Sinha BK; Trush MA; Kennedy KA; Mimnaugh EG
    Cancer Res; 1984 Jul; 44(7):2892-6. PubMed ID: 6327028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electron spin resonance study of the reduction of peroxides by anthracycline semiquinones.
    Kalyanaraman B; Sealy RC; Sinha BK
    Biochim Biophys Acta; 1984 Jun; 799(3):270-5. PubMed ID: 6329317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical production by free and DNA-bound aminoquinone antibiotics and its role in DNA degradation. Electron spin resonance detection of hydroxyl radicals by spin trapping.
    Lown JW; Sim SK; Chen HH
    Can J Biochem; 1978 Nov; 56(11):1042-7. PubMed ID: 216472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radicals induced by adriamycin-sensitive and adriamycin-resistant cells: a spin-trapping study.
    Alegria AE; Samuni A; Mitchell JB; Riesz P; Russo A
    Biochemistry; 1989 Oct; 28(21):8653-8. PubMed ID: 2557905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of free radicals during the cellular metabolism of adriamycin.
    Turner MJ; Everman DB; Ellington SP; Fields CE
    Free Radic Biol Med; 1990; 9(5):415-21. PubMed ID: 1963415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of Adriamycin with haemoglobin. Superoxide dismutase indirectly inhibits reactions of the Adriamycin semiquinone.
    Bates DA; Winterbourn CC
    Biochem J; 1982 Apr; 203(1):155-60. PubMed ID: 6285890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of the semiquinone free radicals of anti-tumour agents with oxygen and iron complexes.
    Butler J; Hoey BM; Swallow AJ
    FEBS Lett; 1985 Mar; 182(1):95-8. PubMed ID: 3918891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines.
    Powis G; Hodnett EM; Santone KS; See KL; Melder DC
    Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of microsomal NADPH oxidation by quinone group-containing anticancer chemicals.
    Handa K; Sato S
    Gan; 1976 Aug; 67(4):523-8. PubMed ID: 15920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xanthine oxidase-catalyzed reduction of estrogen quinones to semiquinones and hydroquinones.
    Roy D; Kalyanaraman B; Liehr JG
    Biochem Pharmacol; 1991 Sep; 42(8):1627-31. PubMed ID: 1656992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.