BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6248506)

  • 1. Autoreduction of spinach plastocyanin at alkaline pH.
    Takabe T; Niwa S; Ishikawa H
    J Biochem; 1980 May; 87(5):1335-9. PubMed ID: 6248506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic strength and pH effects on the rates of reduction of spinach plastocyanin by ascorbate.
    Takabe T; Niwa S; Ishikawa H; Miyakawa M
    J Biochem; 1980 Jan; 87(1):111-5. PubMed ID: 7358620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin.
    Sakurai T
    FEBS Lett; 2006 Mar; 580(7):1729-32. PubMed ID: 16500649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastocyanin conformation. The effect of nitrotyrosine modification and pH.
    Gross EL; Anderson GP; Ketchner SL; Draheim JE
    Biochim Biophys Acta; 1985 Aug; 808(3):437-47. PubMed ID: 4016103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the near-ultraviolet absorption and circular dichroic spectra of parsley plastocyanin for the effects of pH and copper center conformation changes.
    Durell SR; Gross EL; Draheim JE
    Arch Biochem Biophys; 1988 Nov; 267(1):217-27. PubMed ID: 3058037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR signals of oxidized plastocyanin in intact algae.
    Visser JW; Amesz J; Van Gelder BF
    Biochim Biophys Acta; 1974 Feb; 333(2):279-87. PubMed ID: 19400039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo processes on self-associated cationic porphyrins and plastocyanin complexes 1. Ligation of plastocyanin tyrosine 83 onto metalloporphyrins and electron-transfer fluorescence quenching.
    Anula HM; Myshkin E; Guliaev A; Luman C; Danilov EO; Castellano FN; Bullerjahn GS; Rodgers MA
    J Phys Chem A; 2006 Feb; 110(7):2545-59. PubMed ID: 16480316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer reactions of chemically modified plastocyanin with P700 and cytochrome f. Importance of local charges.
    Takabe T; Ishikawa H; Niwa S; Tanaka Y
    J Biochem; 1984 Aug; 96(2):385-93. PubMed ID: 6501248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermal unfolding study of plastocyanin from the thermophilic cyanobacterium Phormidium laminosum.
    Feio MJ; Navarro JA; Teixeira MS; Harrison D; Karlsson BG; De la Rosa MA
    Biochemistry; 2004 Nov; 43(46):14784-91. PubMed ID: 15544349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transient complex of poplar plastocyanin with cytochrome f: effects of ionic strength and pH.
    Lange C; Cornvik T; Díaz-Moreno I; Ubbink M
    Biochim Biophys Acta; 2005; 1707(2-3):179-88. PubMed ID: 15863096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastocyanin conformation. An analysis of its near ultraviolet absorption and circular dichroic spectra.
    Draheim JE; Anderson GP; Duane JW; Gross EL
    Biophys J; 1986 Apr; 49(4):891-900. PubMed ID: 3719071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electron-transfer site of spinach plastocyanin.
    Rush JD; Levine F; Koppenol WH
    Biochemistry; 1988 Aug; 27(16):5876-84. PubMed ID: 2847776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer between plastocyanin and P700 in highly-purified photosystem I reaction center complex. Effects of pH, cations, and subunit peptide composition.
    Takabe T; Ishikawa H; Niwa S; Itoh S
    J Biochem; 1983 Dec; 94(6):1901-11. PubMed ID: 6368528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent structural change of reduced spinach plastocyanin studied by perturbed angular correlation of gamma-rays and dynamic light scattering.
    Sas KN; Haldrup A; Hemmingsen L; Danielsen E; Øgendal LH
    J Biol Inorg Chem; 2006 Jun; 11(4):409-18. PubMed ID: 16570184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The complex formed between plastocyanin and cytochrome c. Investigation by NMR spectroscopy.
    Bagby S; Driscoll PC; Goodall KG; Redfield C; Hill HA
    Eur J Biochem; 1990 Mar; 188(2):413-20. PubMed ID: 2156702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes in plastocyanin.
    Draheim JE; Anderson GP; Pan RL; Rellick LM; Duane JW; Gross EL
    Arch Biochem Biophys; 1985 Feb; 237(1):110-7. PubMed ID: 3970540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescence study of the effects of pH and Mg2+ on the conformation of fructose 1,6-diphosphatase from spinach chloroplasts.
    Takabe T; Ishikawa H; Miyakawa M; Takenaka K; Nikai S
    J Biochem; 1979 Jan; 85(1):203-8. PubMed ID: 33161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values.
    Guss JM; Harrowell PR; Murata M; Norris VA; Freeman HC
    J Mol Biol; 1986 Nov; 192(2):361-87. PubMed ID: 3560221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic characterization of plastocyanin from hornwort.
    Suzuki S; Sawada S; Nakahara A; Nakajima T
    Biochem Biophys Res Commun; 1986 Apr; 136(2):610-5. PubMed ID: 3010985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance studies of the copper binding sites of blue copper proteins: oxidized, reduced, and apoplastocyanin.
    Markley JL; Ulrich EL; Berg SP; Krogmann DW
    Biochemistry; 1975 Oct; 14(20):4428-33. PubMed ID: 809054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.