These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6248525)

  • 1. Sequence-specific endonuclease Bam HI. Effect of hydrophobic reagents on sequence recognition and catalysis.
    George J; Blakesley RW; Chirikjian JG
    J Biol Chem; 1980 Jul; 255(14):6521-4. PubMed ID: 6248525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of non-substrate nucleotides to a restriction endonuclease: a model for the interaction of bam HI with its recognition sequence.
    Hinsch B; Mayer H; Kula MR
    Nucleic Acids Res; 1980 Jun; 8(11):2547-59. PubMed ID: 6160464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size and structure of the highly repetitive BAM HI element in mice.
    Fanning TG
    Nucleic Acids Res; 1983 Aug; 11(15):5073-91. PubMed ID: 6308571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-specific endonuclease BamHI: relaxation of sequence recognition.
    George J; Chirikjian JG
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2432-6. PubMed ID: 6283522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bam HI characterization of 15 HSV-DNAs isolated from recrudescent lesions of three individuals.
    Tognon M; Bartoletti A; Costanzo F; Mannini-Palenzona A; Cassai E
    Microbiologica; 1984 Jan; 7(1):85-90. PubMed ID: 6328226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleavage of phosphorothioate-substituted DNA by restriction endonucleases.
    Potter BV; Eckstein F
    J Biol Chem; 1984 Nov; 259(22):14243-8. PubMed ID: 6094546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bam HI cleaves the self complementary dodecamer d-CGCGGAGCCGCG, before the two G's and possibly binds in the DNA major groove.
    Roy KB; Vrushank D
    Biochem Mol Biol Int; 1995 Jul; 36(4):759-70. PubMed ID: 8528138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of viable T4 bacteriophage containing cytosine-substituted DNA (T4dC phage). II. Cleavage of T4dC DNA by endonuclease SalI and bam HI.
    Takahashi H; Shimizu M; Saito H; Ikeda Y
    Mol Gen Genet; 1979 Jan; 168(1):49-53. PubMed ID: 372740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific BamHI endonuclease. The proposed role of arginine residues in substrate binding and recognition.
    George J; Nardone G; Chirikjian JG
    J Biol Chem; 1985 Nov; 260(26):14387-92. PubMed ID: 2997207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to the synthesis of a protected 2-aminopurine derivative and its incorporation into oligodeoxynucleotides containing the Eco RI and Bam HI recognition sites.
    McLaughlin LW; Leong T; Benseler F; Piel N
    Nucleic Acids Res; 1988 Jun; 16(12):5631-44. PubMed ID: 2838824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical and kinetic properties of the site specific endonuclease Bam HI from Bacillus amylolique-faciens.
    Hinsch B; Kula MR
    Nucleic Acids Res; 1980 Feb; 8(3):623-33. PubMed ID: 6255448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Accelerated hydrolysis of substrates by endonuclease Bam H1 associated with introduction of defects into the oligonucleotide structure].
    Malygin EG; Zinov'ev VV; Rechkunova NI; Ovechkina LG; Gorbunov IuA
    Dokl Akad Nauk SSSR; 1987; 297(4):1003-6. PubMed ID: 2833382
    [No Abstract]   [Full Text] [Related]  

  • 13. Cleavage of single strand oligonucleotides and bacteriophage phi X174 DNA by Msp I endonuclease.
    Yoo OJ; Agarwal KL
    J Biol Chem; 1980 Nov; 255(22):10559-62. PubMed ID: 6159356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An alternative approach for screening active bam HI variants: overexpression in T-7 RNA polymerase based system.
    Acharya AS; Roy KB
    Indian J Biochem Biophys; 2001 Oct; 38(5):303-8. PubMed ID: 11886077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites of cleavage by restriction enzymes in viral DNAs: comparison of observed and expected frequencies.
    Elton RA
    Nucleic Acids Res; 1974 Oct; 1(10):1343-50. PubMed ID: 10793694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and properties of insolubilized restriction endonucleases.
    Lee YH; Blakesley RW; Smith LA; Chirikjian JG
    Nucleic Acids Res; 1978 Mar; 5(3):679-89. PubMed ID: 347400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restriction endonuclease digestion of DNA.
    Smith DR
    Methods Mol Biol; 1993; 18():427-31. PubMed ID: 21390690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure subtraction as an approach to investigation of the mechanism of restriction enzyme action.
    Zinoviev VV; Gorbunov JA; Baclanov MM; Popov SG; Malygin EG
    FEBS Lett; 1983 Apr; 154(2):282-4. PubMed ID: 6299803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of differential reactivities at restriction endonuclease sites.
    Malcolm AD; Moffatt JR
    Biochem Soc Trans; 1980 Dec; 8(6):734-5. PubMed ID: 6257569
    [No Abstract]   [Full Text] [Related]  

  • 20. DNA restriction endonuclease cleavage patterns, DNA sequence similarity and phenotypical characteristics in some strains of Lactobacillus helveticus and Lactobacillus jugurti.
    Manachini PL; Parini C
    Antonie Van Leeuwenhoek; 1983 Jun; 49(2):143-52. PubMed ID: 6311095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.