BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6248549)

  • 1. Mechanism of primer-template-dependent conversion of dNTP leads to dNMP by T5 DNA polymerase.
    Das SK; Fujimura RK
    J Biol Chem; 1980 Aug; 255(15):7149-54. PubMed ID: 6248549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of 3' to 5' exonuclease associated with phage T5-induced DNA polymerase: processiveness and template specificity.
    Das SK; Fujimura RK
    Nucleic Acids Res; 1980 Feb; 8(3):657-71. PubMed ID: 6255449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template-prime-dependent turnover of (Sp)-dATP alpha S by T4 DNA polymerase. The stereochemistry of the associated 3' goes to 5'-exonuclease.
    Gupta A; DeBrosse C; Benkovic SJ
    J Biol Chem; 1982 Jul; 257(13):7689-92. PubMed ID: 6282851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket.
    Kaushik N; Pandey VN; Modak MJ
    Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the mechanism of Escherichia coli DNA polymerase I large fragment. Chain termination and modulation by polynucleotides.
    Detera SD; Wilson SH
    J Biol Chem; 1982 Aug; 257(16):9770-80. PubMed ID: 7050101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding.
    Saturno J; Lázaro JM; Esteban FJ; Blanco L; Salas M
    J Mol Biol; 1997 Jun; 269(3):313-25. PubMed ID: 9199402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primer-mediated inhibition of the hydrolysis of template DNA by T5-induced DNA polymerase.
    Das SK
    Biochem Biophys Res Commun; 1977 Nov; 79(1):247-53. PubMed ID: 336046
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4.
    Capson TL; Peliska JA; Kaboord BF; Frey MW; Lively C; Dahlberg M; Benkovic SJ
    Biochemistry; 1992 Nov; 31(45):10984-94. PubMed ID: 1332748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phi 29 DNA polymerase active site. The conserved amino acid motif "Kx3NSxYG" is involved in template-primer binding and dNTP selection.
    Blasco MA; Lázaro JM; Blanco L; Salas M
    J Biol Chem; 1993 Aug; 268(22):16763-70. PubMed ID: 8344956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effectiveness of complex-formation of nucleotides with human DNA polymerase alpha from data of enzyme modification by reactive nucleotide analogs].
    Nevinskiĭ GA; Doronin SV; Podust VN; Lavrik OI
    Mol Biol (Mosk); 1987; 21(4):1070-9. PubMed ID: 3657780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for substitution mutations. Effect of primer terminal and template residues on nucleotide selection by phage T4 DNA polymerase in vitro.
    Topal MD; DiGuiseppi SR; Sinha NK
    J Biol Chem; 1980 Dec; 255(24):11717-24. PubMed ID: 7002928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exonuclease associated with bacteriophage T5-Induced DNA polymerase.
    Das SK; Fujimura RK
    J Virol; 1976 Oct; 20(1):70-7. PubMed ID: 10451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processive proofreading is intrinsic to T4 DNA polymerase.
    Reddy MK; Weitzel SE; von Hippel PH
    J Biol Chem; 1992 Jul; 267(20):14157-66. PubMed ID: 1629215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered sequential mechanism of substrate recognition and binding by KB cell DNA polymerase alpha.
    Fisher PA; Korn D
    Biochemistry; 1981 Aug; 20(16):4560-9. PubMed ID: 7295634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state kinetics of mouse DNA polymerase beta.
    Tanabe K; Bohn EW; Wilson SH
    Biochemistry; 1979 Jul; 18(15):3401-6. PubMed ID: 465481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of DNA polymerase alpha. Nascent chain elongation, steady state kinetics, and the initiation phase of DNA synthesis.
    Detera SD; Becerra SP; Swack JA; Wilson SH
    J Biol Chem; 1981 Jul; 256(13):6933-43. PubMed ID: 7240254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics.
    Wong I; Patel SS; Johnson KA
    Biochemistry; 1991 Jan; 30(2):526-37. PubMed ID: 1846299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exonuclease activity.
    Cheng CH; Kuchta RD
    Biochemistry; 1993 Aug; 32(33):8568-74. PubMed ID: 8395209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.