These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6248569)

  • 21. Food vacuole membrane in nutrient uptake by Tetrahymena.
    Rasmussen L
    Nature; 1974 Jul; 250(462):157-8. PubMed ID: 4367213
    [No Abstract]   [Full Text] [Related]  

  • 22. Cyclic 3',5'-adenosine monophosphate in Tetrahymena pyriformis.
    Ramanathan S; Chou SC
    Experientia; 1973; 29(7):814. PubMed ID: 4353397
    [No Abstract]   [Full Text] [Related]  

  • 23. Regulation of Ca2+-dependent cyclic AMP accumulation and Ca2+ metabolism in intact pituitary tumor cells by modulators of prolactin production.
    Brostrom MA; Brostrom CO; Brotman LA; Green SS
    Mol Pharmacol; 1983 Mar; 23(2):399-408. PubMed ID: 6300649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth inhibition and biodegradation of catecholamines in the ciliated protozoan Tetrahymena pyriformis.
    Ud-Daula A; Pfister G; Schramm KW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Dec; 43(14):1610-7. PubMed ID: 18988098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PGE1-independent MDCK cells have elevated intracellular cyclic AMP but retain the growth stimulatory effects of glucagon and epidermal growth factor in serum-free medium.
    Taub M; Devis PE; Grohol SH
    J Cell Physiol; 1984 Jul; 120(1):19-28. PubMed ID: 6203919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uridine uptake in a unicellular eukaryote during the interdivision period and after growth arrest.
    Wolfe J
    J Cell Physiol; 1975 Feb; 85(1):73-85. PubMed ID: 803272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the cAMP level on hormonal imprinting in Tetrahymena.
    Csaba G; Kovács P; Vas A
    Acta Physiol Hung; 1987; 69(2):231-7. PubMed ID: 3039799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism. Agonist-induced changes in nucleotide synthesis and degradation.
    Meeker RB; Harden TK
    Mol Pharmacol; 1983 Mar; 23(2):384-92. PubMed ID: 6300648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melatonin in the unicellular Tetrahymena pyriformis: effects of different lighting conditions.
    Köhidai L; Vakkuri O; Keresztesi M; Leppäluoto J; Csaba G
    Cell Biochem Funct; 2002 Sep; 20(3):269-72. PubMed ID: 12125105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of glucagon and insulin on adenosine 3':5'-cyclic monophosphate concentrations in an organ culture of mature rat liver.
    Siddle K; Kane-Maguire B; Campbell AK
    Biochem J; 1973 Apr; 132(4):765-73. PubMed ID: 4352833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steroidogenesis in isolated adrenocortical cells. Correlation with receptor-bound adenosine e 3':5'-cyclic monophosphate.
    Podesta EJ; Milani A; Steffen H; Neher R
    Biochem J; 1979 May; 180(2):355-63. PubMed ID: 226072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of basal and stimulated release of endothelin-1 from guinea pig tracheal epithelial cells in culture by beta 2-adrenoceptor agonists and cyclic AMP enhancers.
    Yang Q; Battistini B; Pelletier S; Sirois P
    Inflammation; 2007 Oct; 30(5):136-47. PubMed ID: 17620004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual capacity for nutrient uptake in Tetrahymena. II. Role of the two systems in vitamin uptake.
    Orias E; Rasmussen
    J Protozool; 1977 Nov; 24(4):507-11. PubMed ID: 413910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of starvation on hormone binding and hormonal imprinting in Tetrahymena.
    Csaba G; Kovács P; Klein I
    Cytobios; 1992; 69(276):7-13. PubMed ID: 1582249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adenosine 3':5'-cyclic monophosphate concentrations and phosphodiesterase activities during axenic growth and differentiation of cells of the cellular slime mould Dictyostelium discoideum.
    Malkinson AM; Ashworth JM
    Biochem J; 1973 May; 134(1):311-9. PubMed ID: 4353085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The stimulus-secretion coupling of glucose-induced insulin release. LIII. Calcium-dependency of the cyclic AMP response to nutrient secretagogues.
    Valverde I; Garcia-Morales P; Ghiglione M; Malaisse WJ
    Horm Metab Res; 1983; 15(2):62-8. PubMed ID: 6186592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomethylation and Volatilization of Arsenic by Model Protozoan Tetrahymena pyriformis under Different Phosphate Regimes.
    Yin X; Wang L; Zhang Z; Fan G; Liu J; Sun K; Sun GX
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28216593
    [No Abstract]   [Full Text] [Related]  

  • 39. Extracellular cyclic AMP-phosphodiesterase accelerates differentiation in Dictyostelium discoideum.
    Alcântara F; Bazill GW
    J Gen Microbiol; 1976 Feb; 92(2):351-68. PubMed ID: 176311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of forskolin to study the relationship between cyclic AMP formation and bone resorption in vitro.
    Lerner UH; Fredholm BB; Ransjö M
    Biochem J; 1986 Dec; 240(2):529-39. PubMed ID: 3028378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.