BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6248629)

  • 1. Role of extracellular Ca++ in regulating isoproterenol-stimulated phosphorylase a formation in murine skeletal muscle.
    Gross SR; Johnson RM
    J Pharmacol Exp Ther; 1980 Jul; 214(1):37-44. PubMed ID: 6248629
    [No Abstract]   [Full Text] [Related]  

  • 2. Rate dependence of isoproterenol-stimulated phosphorylase a formation in mouse heart.
    Barovsky K; Gross SR
    J Pharmacol Exp Ther; 1981 May; 217(2):326-32. PubMed ID: 6262483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca++ inhibition of isoproterenol responses in mammalian skeletal muscle.
    Gross SR; Kelly M
    J Pharmacol Exp Ther; 1981 May; 217(2):271-7. PubMed ID: 6262481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the mechanism of isoproterenol-stimulated glycogenolysis in skeletal muscle of normal and phosphorylase kinase-deficient mice (I strain).
    Gross SR; Bromwell K; Baanante IV
    J Pharmacol Exp Ther; 1978 Jun; 205(3):732-42. PubMed ID: 207857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled diminished energy turnover and phosphorylase a formation in contracting hypothyroid rat muscle.
    Leijendekker WJ; van Hardeveld C; Kassenaar AA
    Metabolism; 1985 May; 34(5):437-41. PubMed ID: 3990559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phosphorylase activation in skeletal muscle in vivo.
    Stull JT; Mayer SE
    J Biol Chem; 1971 Sep; 246(18):5716-23. PubMed ID: 4328834
    [No Abstract]   [Full Text] [Related]  

  • 7. Cyclic AMP in skeletal muscle.
    Mayer SE; Stull JT
    Ann N Y Acad Sci; 1971 Dec; 185():433-48. PubMed ID: 4330511
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium-dependent regulation of phosphorylase activation in a fast-twitch oxidative-glycolytic skeletal muscle.
    Garetto LP; Carlsen RC; Lee JH; Walsh DA
    Mol Pharmacol; 1988 Feb; 33(2):212-7. PubMed ID: 3340081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool.
    Entman ML; Keslensky SS; Chu A; Van Winkle WB
    J Biol Chem; 1980 Jul; 255(13):6245-52. PubMed ID: 6446555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic regulation of signal transfer from adrenergic receptors in cardiac muscle.
    Mayer SE; Dobson JG; Ingebretsen WR; Becker E; Brown JH; Friedman WF; Ross J
    Adv Cyclic Nucleotide Res; 1978; 9():305-14. PubMed ID: 208380
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of cyclic adenosine 3', 5'-monophosphate and calcium in the regulation of contractility and glycogen phosphorylase activity in guinea pig papillary muscle.
    Dobson JG; Ross J; Mayer SE
    Circ Res; 1976 Sep; 39(3):388-95. PubMed ID: 182412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of muscular phosphorylase b kinase by a minute amount of Ca ion.
    Ozawa E
    J Biochem; 1972 Feb; 71(2):321-31. PubMed ID: 4335786
    [No Abstract]   [Full Text] [Related]  

  • 13. Rat liver phosphorylase b kinase: interconvertible forms [proceedings].
    Vandenheede JR; Keppens S; De Wulf H
    Arch Int Physiol Biochim; 1977 Feb; 85(1):201-3. PubMed ID: 68751
    [No Abstract]   [Full Text] [Related]  

  • 14. Rabbit skeletal muscle phosphorylase kinase. Comparison of glycogen synthase and phosphorylase as substrates.
    DePaoli-Roach AA; Roach PJ; Larner J
    J Biol Chem; 1979 May; 254(10):4212-9. PubMed ID: 108271
    [No Abstract]   [Full Text] [Related]  

  • 15. The phosphorylase kinase activity of hearts from phosphorylase kinase-deficient mice.
    Gross SR; Connor JJ; Johnson RM
    Biochem Genet; 1983 Aug; 21(7-8):781-6. PubMed ID: 6626146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The role of extracellular calcium in regulating the contraction of the developing musculature in the frog Rana temporaria].
    Radziukevich TL
    Zh Evol Biokhim Fiziol; 1996; 32(3):284-91. PubMed ID: 9148615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of enhanced phosphorylase activation in the hyperthyroid rat heart.
    Werth DK; Watanabe AM; Hathaway DR
    J Mol Cell Cardiol; 1983 Mar; 15(3):163-71. PubMed ID: 6306261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet radiation-induced decreases in tension and phosphorylase a formation in rat aorta.
    Lincoln TM; Laks J; Johnson RM
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(6):525-33. PubMed ID: 4086674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [cAMP-dependence of phosphorylation of the phosphorylase b kinase of the skeletal muscles of rats during physical exercise and training].
    Kalinskiĭ MI; Kondratiuk TP; Kurskiĭ MD
    Biokhimiia; 1982 Dec; 47(12):1988-92. PubMed ID: 6297623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency modulation of the inotropic action of isoproterenol in mouse heart.
    Barovsky K; Gross SR
    J Pharmacol Exp Ther; 1981 May; 217(2):314-25. PubMed ID: 6262482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.