These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 6248646)
1. Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. Haworth RA; Hunter DR J Membr Biol; 1980 Jun; 54(3):231-6. PubMed ID: 6248646 [TBL] [Abstract][Full Text] [Related]
2. The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. Lapidus RG; Sokolove PM J Biol Chem; 1994 Jul; 269(29):18931-6. PubMed ID: 8034650 [TBL] [Abstract][Full Text] [Related]
3. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Reed DJ; Savage MK Biochim Biophys Acta; 1995 May; 1271(1):43-50. PubMed ID: 7599224 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of pyridine nucleotides and depletion of ATP and ADP during calcium- and inorganic phosphate-induced mitochondrial permeability transition. Savage MK; Reed DJ Biochem Biophys Res Commun; 1994 May; 200(3):1615-20. PubMed ID: 8185617 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of bovine heart NAD-specific isocitrate dehydrogenase by reduced pyridine nucleotides: modulation of inhibition by ADP, NAD+, Ca2+, citrate, and isocitrate. Gabriel JL; Plaut GW Biochemistry; 1984 Jun; 23(12):2773-8. PubMed ID: 6466615 [TBL] [Abstract][Full Text] [Related]
6. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Lê-Quôc D; Lê-Quôc K Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563 [TBL] [Abstract][Full Text] [Related]
7. Magnesium ion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP. Novgorodov SA; Gudz TI; Brierley GP; Pfeiffer DR Arch Biochem Biophys; 1994 Jun; 311(2):219-28. PubMed ID: 8203884 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition. Lawlis VB; Roche TE Biochemistry; 1981 Apr; 20(9):2519-24. PubMed ID: 6894547 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator. Moreno-Sánchez R Biochim Biophys Acta; 1983 Aug; 724(2):278-85. PubMed ID: 6309222 [TBL] [Abstract][Full Text] [Related]
10. Direct thyroid hormone signalling via ADP-ribosylation controls mitochondrial nucleotide transport and membrane leakiness by changing the conformation of the adenine nucleotide transporter. Mowbray J; Hardy DL FEBS Lett; 1996 Sep; 394(1):61-5. PubMed ID: 8925929 [TBL] [Abstract][Full Text] [Related]
11. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Hunter DR; Haworth RA Arch Biochem Biophys; 1979 Jul; 195(2):453-9. PubMed ID: 383019 [No Abstract] [Full Text] [Related]
12. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Rutter GA; Denton RM Biochem J; 1988 May; 252(1):181-9. PubMed ID: 3421900 [TBL] [Abstract][Full Text] [Related]
13. Substrate specific effects of calcium on metabolism of rat heart mitochondria. Panov AV; Scaduto RC Am J Physiol; 1996 Apr; 270(4 Pt 2):H1398-406. PubMed ID: 8967382 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation and hydrolysis of 7-deazaadenine nucleotides by rat liver and beef heart mitochondria. Petrescu I; Lascu I; Goia I; Markert M; Schmidt FH; Deaciuc IV; Kezdi M; Bârzu O Biochemistry; 1982 Mar; 21(5):886-93. PubMed ID: 7074059 [TBL] [Abstract][Full Text] [Related]
15. Adenine nucleotides and intracellular Ca2+ regulate a voltage-dependent and glucose-sensitive potassium channel in neurosecretory cells. Onetti CG; Lara J; García E Pflugers Arch; 1996 May; 432(1):144-54. PubMed ID: 8662279 [TBL] [Abstract][Full Text] [Related]
16. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
17. H+-dependent efflux of Ca2+ from heart mitochondria. Jurkowitz MS; Brierley GP J Bioenerg Biomembr; 1982 Dec; 14(5-6):435-49. PubMed ID: 7161280 [TBL] [Abstract][Full Text] [Related]
18. Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6. Lee AC; Zizi M; Colombini M J Biol Chem; 1994 Dec; 269(49):30974-80. PubMed ID: 7983033 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Sato T; Saito T; Saegusa N; Nakaya H Circulation; 2005 Jan; 111(2):198-203. PubMed ID: 15623543 [TBL] [Abstract][Full Text] [Related]
20. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Hunter DR; Haworth RA Arch Biochem Biophys; 1979 Jul; 195(2):468-77. PubMed ID: 112926 [No Abstract] [Full Text] [Related] [Next] [New Search]