BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 624899)

  • 1. The permeability of the skin of the aquatic anuran Xenopus laevis (Pipidae).
    Yorio T; Bentley PJ
    J Exp Biol; 1978 Feb; 72():285-9. PubMed ID: 624899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetrical permeability of the integument of tree frogs (Hylidae).
    Yorio T; Bentley PJ
    J Exp Biol; 1977 Apr; 67():197-204. PubMed ID: 894178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The permeability of the skin of a neotenous urodele amphibian, the mudpuppy Necturus maculosus.
    Bentley PJ; Yorio T
    J Physiol; 1977 Feb; 265(2):537-47. PubMed ID: 850206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of transcutaneous permeability in skins of larval and adult salamanders (Ambystoma tigrinum).
    Bentley PJ; Baldwin GF
    Am J Physiol; 1980 Nov; 239(5):R505-8. PubMed ID: 7435664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The passive permeability of the skin of anuran amphibia: a comparison of frogs (Rana pipiens) and toads (Bufo marinus).
    Bentley PJ; Yorio T
    J Physiol; 1976 Oct; 261(3):603-15. PubMed ID: 824445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actions of external hypertonic urea, ADH, and theophylline on transcellular and extracellular solute permeabilities in frog skin.
    Mandel LJ
    J Gen Physiol; 1975 May; 65(5):599-615. PubMed ID: 1080796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel vasotocin-regulated aquaporins expressed in the ventral skin of semiaquatic anuran amphibians: evolution of cutaneous water-absorbing mechanisms.
    Saitoh Y; Ogushi Y; Shibata Y; Okada R; Tanaka S; Suzuki M
    Endocrinology; 2014 Jun; 155(6):2166-77. PubMed ID: 24654785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The water-absorption region of ventral skin of several semiterrestrial and aquatic anuran amphibians identified by aquaporins.
    Ogushi Y; Tsuzuki A; Sato M; Mochida H; Okada R; Suzuki M; Hillyard SD; Tanaka S
    Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1150-62. PubMed ID: 20811008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active sodium uptake by the skin of foetal sheep and pigs.
    France VM
    J Physiol; 1976 Jun; 258(2):377-92. PubMed ID: 957162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule disruption inhibits AVT-stimulated Cl- secretion but not Na+ reabsorption in A6 cells.
    Morris RG; Tousson A; Benos DJ; Schafer JA
    Am J Physiol; 1998 Feb; 274(2):F300-14. PubMed ID: 9486225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zonal differences in permeability of the skin of some anuran Amphibia.
    Bentley PJ; Main AR
    Am J Physiol; 1972 Aug; 223(2):361-3. PubMed ID: 4625782
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of ethanol on ion transport in frog skin.
    Boyett JD; Van Bruggen JT
    Biochim Biophys Acta; 1976 Jul; 436(3):686-95. PubMed ID: 1085164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dilantin-calcium interaction and active Na transport in frog skin.
    Riddle TG; Mandel LJ; Goldner MM
    Eur J Pharmacol; 1975 Aug; 33(1):189-92. PubMed ID: 1080708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of PCMBS on the water and small solute permeabilities in frog urinary bladder.
    Ibarra C; Ripoche P; Parisi M; Bourguet J
    J Membr Biol; 1990 Jun; 116(1):57-64. PubMed ID: 2165176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata.
    Yamada T; Nishio T; Sano Y; Kawago K; Matsuda K; Uchiyama M
    Gen Comp Endocrinol; 2008 May; 157(1):63-9. PubMed ID: 18448104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antidiuretic hormone action in A6 cells: effect on apical Cl and Na conductances and synergism with aldosterone for NaCl reabsorption.
    Verrey F
    J Membr Biol; 1994 Feb; 138(1):65-76. PubMed ID: 8189433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive sodium movements across the opercular epithelium: the paracellular shunt pathway and ionic conductance.
    Degnan KJ; Zadunaisky JA
    J Membr Biol; 1980 Aug; 55(3):175-85. PubMed ID: 7411592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of furosemide on unidirectional fluxes of sodium and chloride across the skin of the frog, Rana pipiens.
    Yorio T; Bentley PJ
    Biochim Biophys Acta; 1976 Dec; 455(3):831-6. PubMed ID: 1087163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway.
    Mandel LJ; Curran PF
    J Gen Physiol; 1972 May; 59(5):503-18. PubMed ID: 4537305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton pump-driven cutaneous chloride uptake in anuran amphibia.
    Jensen LJ; Willumsen NJ; Amstrup J; Larsen EH
    Biochim Biophys Acta; 2003 Dec; 1618(2):120-32. PubMed ID: 14729149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.