These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6249155)

  • 21. Effects of plant lectins on cation-activated brain ATPases.
    Rotrosen J; Traficante LJ; Covner B; Basuk P; Gershon S
    Life Sci; 1978 Sep; 23(12):1241-7. PubMed ID: 213668
    [No Abstract]   [Full Text] [Related]  

  • 22. P-type ATPases. Introduction.
    Carafoli E
    J Bioenerg Biomembr; 1992 Jun; 24(3):245-7. PubMed ID: 1328173
    [No Abstract]   [Full Text] [Related]  

  • 23. Transcellular transport of calcium and inorganic phosphate in the small intestinal epithelium.
    Murer H; Hildmann B
    Am J Physiol; 1981 Jun; 240(6):G409-16. PubMed ID: 6264798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium transport in isolated and reconstituted basal-lateral plasma membranes of rat kidney cortex.
    Gmaj P; Ghijsen W; Murer H; Carafoli E
    Prog Clin Biol Res; 1984; 168():337-42. PubMed ID: 6151191
    [No Abstract]   [Full Text] [Related]  

  • 25. Membrane adenosine triphosphatase activities in rat pancreas.
    Martin SS; Senior AE
    Biochim Biophys Acta; 1980 Nov; 602(2):401-18. PubMed ID: 6252965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of ATP with the active sites of ATPases in heart sarcolemma. Role of the hydroxylic group in position two on the ribose moiety.
    Monosíková R; Ziegelhöffer A; Breier A
    Gen Physiol Biophys; 1987 Apr; 6(2):193-6. PubMed ID: 2820838
    [No Abstract]   [Full Text] [Related]  

  • 27. Sodium-dependent neutral amino acid transport in native and reconstituted membrane vesicles from Ehrlich cells.
    Im WB; Spector AA
    J Biol Chem; 1980 Jan; 255(2):764-70. PubMed ID: 6243286
    [No Abstract]   [Full Text] [Related]  

  • 28. Interconversion of two kinetically distinct states of the membrane-bound and solubilised H+-translocating ATPase from Rhodospirillum rubrum.
    Webster GD; Edwards PA; Jackson JB
    FEBS Lett; 1977 Apr; 76(1):29-35. PubMed ID: 15868
    [No Abstract]   [Full Text] [Related]  

  • 29. Freezing and thawing of myosin with no alteration in ATPase activity.
    Wikman-Coffelt J; Fabian F; Mason DT
    Prep Biochem; 1980; 10(2):97-101. PubMed ID: 6247710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of sodium in intestinal calcium transport.
    Nellans HN; Popovitch JR
    Prog Clin Biol Res; 1984; 168():301-6. PubMed ID: 6096884
    [No Abstract]   [Full Text] [Related]  

  • 31. Adenosine triphosphatases of rat pancreatic islets: comparison with those of rat kidney.
    Levin SR; Kasson BG; Driessen JF
    J Clin Invest; 1978 Sep; 62(3):692-701. PubMed ID: 211146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium transport by bull spermatozoa plasma membranes.
    Breitbart H; Rubinstein S
    Biochim Biophys Acta; 1983 Jul; 732(2):464-8. PubMed ID: 6135447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The activity of adenosine desaminase, 5'-nucleotidase, and magnesium-, sodium, potassium- and calcium-ATPase in supernatants and homogenates of different tissues and that of adenosine desaminase in the serum of cattle].
    Sywall R; Kolb E; Gründel G; Schineff C; Schmidt U
    Arch Exp Veterinarmed; 1987 Mar; 41(2):147-59. PubMed ID: 3038048
    [No Abstract]   [Full Text] [Related]  

  • 34. Distribution and function of classes of ATPases along the nephron.
    Katz AI
    Kidney Int; 1986 Jan; 29(1):21-31. PubMed ID: 2870215
    [No Abstract]   [Full Text] [Related]  

  • 35. [Changes in acetylcholinesterase and ATPase activity and certain structural features of the erythrocyte membrane in experimental myocardial ischemia].
    Chernukh AM; Kopteva LA; Shevchenko AS
    Biull Eksp Biol Med; 1980 Sep; 90(9):270-2. PubMed ID: 6252988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional consequences of mutations in the transmembrane core region for cation translocation and energy transduction in the Na+,K(+)-ATPase and the SR Ca(2+)-ATPase.
    Vilsen B; Ramlov D; Andersen JP
    Ann N Y Acad Sci; 1997 Nov; 834():297-309. PubMed ID: 9405816
    [No Abstract]   [Full Text] [Related]  

  • 37. [Systems of electromechanical coupling].
    Esyrev OV
    Ukr Biokhim Zh (1978); 1982; 54(2):217-31. PubMed ID: 6123170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Transport ATPase activity in various brain structures during the development of an experimental neurotic state].
    Davydov VV; Krauz VA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1981; 31(2):423-6. PubMed ID: 6115524
    [No Abstract]   [Full Text] [Related]  

  • 39. Na+-dependent, potential-sensitive L-ascorbate transport across brush border membrane vesicles from kidney cortex.
    Toggenburger G; Häusermann M; Mütsch B; Genoni G; Kessler M; Weber F; Hornig D; O'Neill B; Semenza G
    Biochim Biophys Acta; 1981 Sep; 646(3):433-43. PubMed ID: 7284371
    [No Abstract]   [Full Text] [Related]  

  • 40. Ca++-transporting ATPase of rat kidney basal-lateral plasma membranes.
    Gmaj P; Zurini M; Murer H; Carafoli E
    Prog Clin Biol Res; 1984; 164():407-15. PubMed ID: 6097912
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.