BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

926 related articles for article (PubMed ID: 6249258)

  • 21. Guanine nucleotide mediated desensitization of adenylate cyclase in cell free preparations from a Leydig cell tumour.
    Levi SN; Schumacher M; Dix CJ; Thomas MG; Cooke BA
    Int J Androl; 1982 Dec; 5(6):570-8. PubMed ID: 6298116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of plasma membranes containing LH sensitive adenylate cyclase from a Leydig cell tumour.
    Levi SN; Dix CJ; Thomas MG; Cooke BA
    Int J Androl; 1982 Dec; 5(6):557-69. PubMed ID: 7160920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of delta 9-tetrahydrocannabinol on glucagon receptor coupling to adenylate cyclase in rat liver plasma membranes.
    Hillard CJ; Bloom AS; Houslay MD
    Biochem Pharmacol; 1986 Aug; 35(16):2797-803. PubMed ID: 3017362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient states of adenylate cyclase in brain membranes.
    Tamir A; Tolkovsky AM
    J Neurochem; 1985 Apr; 44(4):1006-13. PubMed ID: 2983025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of guanine nucleotides in the stimulation of thyroid adenylate cyclase by prostaglandin E1 and cholera toxin.
    Friedman Y; Lang M; Burke G
    Biochim Biophys Acta; 1981 Feb; 673(1):114-23. PubMed ID: 7470506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of Gi and the membrane-fluidizing agent benzyl alcohol in modulating the hysteretic activation of human platelet adenylate cyclase by guanylyl 5'-imidodiphosphate.
    Spence S; Houslay MD
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):945-9. PubMed ID: 8489520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epidermal growth factor stimulates rat cardiac adenylate cyclase through a GTP-binding regulatory protein.
    Nair BG; Rashed HM; Patel TB
    Biochem J; 1989 Dec; 264(2):563-71. PubMed ID: 2513810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of Ni protein in the functional coupling of the atrial natriuretic factor (ANF) receptor to adenylate cyclase in rat lung plasma membranes.
    Resink TJ; Panchenko MP; Tkachuk VA; Bühler FR
    Eur J Biochem; 1988 Jun; 174(3):531-5. PubMed ID: 2839333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of fluoride on the state of aggregation of adenylate cyclase in rat liver plasma membranes.
    Martin BR; Stein JM; Kennedy EL; Doberska CA
    Biochem J; 1980 Apr; 188(1):137-40. PubMed ID: 7406875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of guanine nucleotides and divalent cations on forskolin activation of rabbit luteal adenylyl cyclase: evidence for the existence of an inhibitory guanine nucleotide-binding regulatory component.
    Abramowitz J; Campbell AR
    Endocrinology; 1984 Jun; 114(6):1955-62. PubMed ID: 6327229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solubilization and separation of the glucagon receptor and adenylate cyclase in guanine nucleotide-sensitive states.
    Welton AF; Lad PM; Newby AC; Yamamura H; Nicosia S; Rodbell M
    J Biol Chem; 1977 Sep; 252(17):5947-50. PubMed ID: 197078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transient and steady state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase system from rat liver plasma membranes. Interpretation in terms of a simple two-state model.
    Birnbaumer L; Swartz TL; Abramowitz J; Mintz PW; Iyengar R
    J Biol Chem; 1980 Apr; 255(8):3542-51. PubMed ID: 7364755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles of GTP and GDP in the regulation of the thyroid adenylate cyclase system.
    Totsuka Y; Nielsen TB; Field JB
    Biochim Biophys Acta; 1982 Oct; 718(2):135-43. PubMed ID: 6291624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of guanine nucleotide-regulatory components in brain membranes. II. Relationship of guanosine 5'-triphosphate effects on opiate receptor binding and coupling receptors with adenylate cyclase.
    Childers SR; LaRiviere G
    J Neurosci; 1984 Nov; 4(11):2764-71. PubMed ID: 6094742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of glucagon activation of adenylate cyclase in the presence of Mn2+.
    Houslay MD; Heyworth CM; Whetton AD
    FEBS Lett; 1983 May; 155(2):311-6. PubMed ID: 6303847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interactions between the activatory guanine nucleotide binding protein and the catalytic subunit of adenylate cyclase in rat liver plasma membranes.
    Wong SK; Martin BR
    Biochem J; 1985 Oct; 231(1):39-46. PubMed ID: 3933489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diabetes abolishes the GTP-dependent, but not the receptor-dependent inhibitory function of the inhibitory guanine-nucleotide-binding regulatory protein (Gi) on adipocyte adenylate cyclase activity.
    Strassheim D; Milligan G; Houslay MD
    Biochem J; 1990 Mar; 266(2):521-6. PubMed ID: 2156498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of a guanine nucleotide-binding protein in the activation of rat liver plasma-membrane adenylate cyclase by forskolin.
    Wong SK; Martin BR
    Biochem J; 1983 Dec; 216(3):753-9. PubMed ID: 6320798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of vinblastine on the glucagon, basal and GTP-stimulated states of the adenylate cyclase from rat liver plasma membranes.
    Whetton AD; Houslay MD
    FEBS Lett; 1980 Mar; 111(2):290-4. PubMed ID: 6244186
    [No Abstract]   [Full Text] [Related]  

  • 40. Mobile receptor and collision coupling mechanisms for the activation of adenylate cyclase by glucagon.
    Houslay MD
    Adv Cyclic Nucleotide Res; 1981; 14():111-9. PubMed ID: 6269373
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.