These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6249289)

  • 1. Proton release and formation of photointermediates after light-induced proton uptake in bovine photoreceptor disc membranes.
    Watanabe M; Asai H
    Biochem Biophys Res Commun; 1980 May; 94(2):529-34. PubMed ID: 6249289
    [No Abstract]   [Full Text] [Related]  

  • 2. Discussion to II. Light-induced conformational changes of the rhodopsin molecule.
    Biophys Struct Mech; 1977 Jun; 3(2):127-33. PubMed ID: 890048
    [No Abstract]   [Full Text] [Related]  

  • 3. Proton uptake by light induced interaction between rhodopsin and G-protein.
    Schleicher A; Hofmann KP
    Z Naturforsch C Biosci; 1985; 40(5-6):400-5. PubMed ID: 2992179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of rhodopsin photolysis intermediates in retinal rod disk membranes--I. Temperature dependence of lumirhodopsin and metarhodopsin I kinetics.
    Lewis JW; Winterle JS; Powers MA; Kliger DS; Dratz EA
    Photochem Photobiol; 1981 Sep; 34(3):375-84. PubMed ID: 7280053
    [No Abstract]   [Full Text] [Related]  

  • 5. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules.
    Aton BR
    Biochemistry; 1986 Feb; 25(3):677-80. PubMed ID: 3955023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Release of calcium ions from native outer segments rods after partial rhodopsin bleaching].
    Shevchenko TF; Kalamkarov GR; Kosolapov SS; OstrovskiÄ­ MA
    Biofizika; 1981; 26(2):284-7. PubMed ID: 7260134
    [No Abstract]   [Full Text] [Related]  

  • 7. Localisation of the major site. of light stimulated phosphorylation in a region of rhodopsin distinct from the chromophore binding site.
    Virmaux N; Weller M; Mandel P
    FEBS Lett; 1975 May; 53(3):320-3. PubMed ID: 1137959
    [No Abstract]   [Full Text] [Related]  

  • 8. Light induced interaction between rhodopsin and GTP dependent processes in rod outer segments--I. Kinetic analyses of light scattering transients.
    Gupta BD; Deshpande S; Jones RE; Borys TJ; Abrahamson EW
    Photochem Photobiol; 1986 May; 43(5):529-33. PubMed ID: 3737703
    [No Abstract]   [Full Text] [Related]  

  • 9. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.
    Cooper A; Converse CA
    Biochemistry; 1976 Jul; 15(14):2970-8. PubMed ID: 8077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-enhanced cross-linking of rhodopsin in rod outer segment membranes as detected by chemical probes.
    Shaw A; Crain R; Marinetti GV; O'Brien D; Tyminski PN
    Biochim Biophys Acta; 1980 Dec; 603(2):313-21. PubMed ID: 7459357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The links between rhodopsin bleaching and visual adaptation.
    Catt M; Ernst W; Kemp CM
    Biochem Soc Trans; 1982 Oct; 10(5):343-5. PubMed ID: 7141090
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of volatile anesthetics on light-induced proton uptake of rhodopsin in bovine rod outer segment disk membrane.
    Mashimo T; Tashiro C; Yoshiya I
    Anesthesiology; 1984 Oct; 61(4):439-43. PubMed ID: 6091504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular mechanisms of receptor-potential generation by the photoreceptor. III. Conformational transition responsible for the tail end of the photoresponse of an artificial lipid membrane modified by fragments of the external segments of rods].
    Fesenko EE; Ratner VL
    Mol Biol (Mosk); 1977; 11(5):1002-9. PubMed ID: 618334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Molecular mechanisms of receptor. II. Identification of the conformational transition of rhodopsin responsible for the leading edge of the photoresponse of artificial lipid membranes modified by fragments of the outer segment of rods].
    Fesenko EE; Orlov NIa; Ratner VL; LiubarskiÄ­ AL
    Mol Biol (Mosk); 1977; 11(4):741-7. PubMed ID: 618319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reactivity of the sulfhydryl groups of rhodopsin in rod outer segment membranes.
    McDowell JH; Mas MT; Griffith KD; Hargrave PA
    Vision Res; 1979; 19(10):1143-5. PubMed ID: 550572
    [No Abstract]   [Full Text] [Related]  

  • 16. Photosensitivities of iodopsin and rhodopsins.
    Okano T; Fukada Y; Shichida Y; Yoshizawa T
    Photochem Photobiol; 1992 Dec; 56(6):995-1001. PubMed ID: 1492139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between spin-labeled rhodopsin and spin-labeled phospholipids in the retinal outer segment disc membranes.
    Rousselet A; Devaux PF
    FEBS Lett; 1978 Sep; 93(1):161-4. PubMed ID: 212310
    [No Abstract]   [Full Text] [Related]  

  • 18. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study.
    de Grip WJ; Gillespie J; Rothschild KJ
    Biochim Biophys Acta; 1985 Aug; 809(1):97-106. PubMed ID: 2992584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The functional similarity of vertebrate rhodopsin and of a photosensitive pigment from the unicellular flagellate alga Chlamydomonas reinhardtii].
    Korol'kov SN; Garnovskaia MN; Basov AS; Dumler IL
    Zh Evol Biokhim Fiziol; 1989; 25(6):777-80. PubMed ID: 2560308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of visible light on the regeneration of rhodopsin.
    Crouch R; Coffman M
    Biochem Biophys Res Commun; 1976 Nov; 73(2):428-33. PubMed ID: 999718
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.