BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6249445)

  • 1. Reduction of hippocampal acetylcholine turnover in rats treated with (-)-delta 8-tetrahydrocannabinol and its 1',2'-dimethyl-heptyl homolog.
    Revuelta AV; Cheney DL; Costa E; Lander N; Mechoulam R
    Brain Res; 1980 Aug; 195(2):445-52. PubMed ID: 6249445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cannabinoids on the turnover rate of acetylcholine in rat hippocampus, striatum and cortex.
    Revuelta AV; Moroni F; Cheney DL; Costa E
    Naunyn Schmiedebergs Arch Pharmacol; 1978 Sep; 304(2):107-10. PubMed ID: 703853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between impulse-flow and delta 9-tetrahydrocannabinol within the septal-hippocampal cholinergic pathway of rat brain.
    Lindamood C; Colasanti BK
    J Pharmacol Exp Ther; 1981 Nov; 219(2):580-4. PubMed ID: 6270316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cannabinoids on levels of acetylcholine and choline and on turnover rate of acetylcholine in various regions of the mouse brain.
    Tripathi HL; Vocci FJ; Brase DA; Dewey WL
    Alcohol Drug Res; 1987; 7(5-6):525-32. PubMed ID: 3620017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A repeated test procedure to assess onset and duration of the cue properties of (-) delta 9-THC, (-) delta 8-THC-DMH and (+) delta 8-THC.
    Järbe TU; Swedberg MD; Mechoulam R
    Psychopharmacology (Berl); 1981; 75(2):152-7. PubMed ID: 6275439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of delta 9-tetrahydrocannabinol and cannabidiol on sodium-dependent high affinity choline uptake in the rat hippocampus.
    Lindamood C; Colasanti BK
    J Pharmacol Exp Ther; 1980 May; 213(2):216-21. PubMed ID: 6245205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levonantradol-induced inhibition of acetylcholine turnover in rat hippocampus and striatum.
    Costa E; Cheney DL; Murray TF
    J Clin Pharmacol; 1981; 21(S1):256S-261S. PubMed ID: 6271831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in exogenous choline fails to elevate the content or turnover rate of cortical, striatal, or hippocampal acetylcholine.
    Brunello N; Cheney DL; Costa E
    J Neurochem; 1982 Apr; 38(4):1160-3. PubMed ID: 7062035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chronic Delta(9)-tetrahydrocannabinol treatment on hippocampal extracellular acetylcholine concentration and alternation performance in the T-maze.
    Nava F; Carta G; Colombo G; Gessa GL
    Neuropharmacology; 2001 Sep; 41(3):392-9. PubMed ID: 11522331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of hippocampal acetylcholine release after acute and repeated Delta9-tetrahydrocannabinol in rats.
    Carta G; Nava F; Gessa GL
    Brain Res; 1998 Oct; 809(1):1-4. PubMed ID: 9795096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dimethylheptyl derivative of (-)-delta 8-tetrahydrocannabinol reduces the turnover rate of gamma-aminobutyric acid in the septum and nucleus accumbens.
    Revuelta AV; Cheney DL; Costa E
    Life Sci; 1982 May; 30(21):1841-6. PubMed ID: 6285114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of brain monoamines in the delta-9-tetrahydrocannabinol-induced reduction of hippocampal choline uptake.
    Lindamood C; Colasanti BK
    J Neurochem; 1981 Sep; 37(3):788-91. PubMed ID: 6268755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cannabinoids and the cholinergic system.
    Domino EF
    J Clin Pharmacol; 1981; 21(S1):249S-255S. PubMed ID: 6271830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Delta(9)-THC-induced increase of cortical and hippocampal acetylcholine release by micro opioid and D(1) dopamine receptors.
    Pisanu A; Acquas E; Fenu S; Di Chiara G
    Neuropharmacology; 2006 May; 50(6):661-70. PubMed ID: 16427098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous reduction in the turnover rates of septal gamma-aminobutyric acid and hippocampal acetylcholine following administration of nabilone.
    Revuelta AV; Cheney DL
    Neuropharmacology; 1981 Nov; 20(11):1111-4. PubMed ID: 6119634
    [No Abstract]   [Full Text] [Related]  

  • 16. Changes in hippocampal CA1 population spikes following administration of delta-9-THC.
    Weisz DJ; Gunnell DL; Teyler TJ; Vardaris RM
    Brain Res Bull; 1982 Feb; 8(2):155-62. PubMed ID: 6279250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of certain enantiomeric cannabinoids in the mouse vas deferens and the myenteric plexus preparation of guinea-pig small intestine.
    Pertwee RG; Stevenson LA; Elrick DB; Mechoulam R; Corbett AD
    Br J Pharmacol; 1992 Apr; 105(4):980-4. PubMed ID: 1324060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Various dose-dependent influences of apomorphine on the acetylcholine turnover in striatum and mesolimbic areas of rat brain.
    Langnickel R; Bluth R; Oelssner W
    Biomed Biochim Acta; 1983; 42(7-8):937-46. PubMed ID: 6651810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic mediation in the inhibition of hippocampal acetylcholine turnover rate elicited by delta 9-tetrahydrocannabinol.
    Revuelta AV; Cheney DL; Wood PL; Costa E
    Neuropharmacology; 1979 Jun; 18(6):525-30. PubMed ID: 481705
    [No Abstract]   [Full Text] [Related]  

  • 20. Morphometric studies of the rat hippocampus following chronic delta-9-tetrahydrocannabinol (THC).
    Scallet AC; Uemura E; Andrews A; Ali SF; McMillan DE; Paule MG; Brown RM; Slikker W
    Brain Res; 1987 Dec; 436(1):193-8. PubMed ID: 2825925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.