These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 6249590)

  • 41. The mobilization of iron from ferritin by chelating agents.
    Pape L; Multani JS; Stitt C; Saltman P
    Biochemistry; 1968 Feb; 7(2):613-6. PubMed ID: 5644132
    [No Abstract]   [Full Text] [Related]  

  • 42. Equilibrium Studies of Dibutyltin(IV)-Zwitterionic Buffer Complexation.
    El-Gahami MA; Albishri HM
    J Solution Chem; 2013; 42(10):2012-2024. PubMed ID: 24273357
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical reclosure of opened imidazole ring of guanine.
    Chetsanga CJ; Mavunga I
    Chem Biol Interact; 1986 Apr; 58(1):117-23. PubMed ID: 3708719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of the appropriate valence of 1,4-piperazinediethanesulfonic acid (PIPES) in physiological pH.
    Hatae J; Fujishiro N; Kawata H
    Biol Pharm Bull; 1994 Mar; 17(3):437-9. PubMed ID: 8019512
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The suitability of 160Tb as a PAC probe for studies of biomolecules.
    Sidhu NP; Sahota HS; Cheema TS
    Int J Rad Appl Instrum A; 1988; 39(5):437-8. PubMed ID: 2840419
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Buffers of constant ionic strength for studying pH-dependent processes.
    Ellis KJ; Morrison JF
    Methods Enzymol; 1982; 87():405-26. PubMed ID: 7176924
    [No Abstract]   [Full Text] [Related]  

  • 47. Competitive inhibition of a non-natural cofactor dependent formaldehyde dehydrogenase by imidazole.
    Wang J; Wan L; Guo X; Wang X; Zhao ZK
    Biotechnol Lett; 2023 Jun; 45(5-6):679-687. PubMed ID: 37071383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of proteins in the presence of imidazole buffers.
    Molina F; Rueda A; Bosque-Sendra JM; Megías L
    J Pharm Biomed Anal; 1996 Jan; 14(3):273-80. PubMed ID: 8851751
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Buffers for the physiological pH range: thermodynamic constants of four substituted aminoethanesulfonic acids from 5 to 50 degrees C.
    Vega CA; Bates RG
    Anal Chem; 1976 Aug; 48(9):1293-6. PubMed ID: 182042
    [No Abstract]   [Full Text] [Related]  

  • 50. Sodium 1,4-piperazinediethanesulfonate monohydrate ("Pipes") for measurement of pH of blood and other physiological media.
    Roy RN; Gibbons JJ; Padron JL; Buechter K; Faszholz S
    Clin Chem; 1980 Dec; 26(13):1919-20. PubMed ID: 6254694
    [No Abstract]   [Full Text] [Related]  

  • 51. Buffering requirements for cAMP determination by radioimmunoassay in cultured macrophages.
    Roland CR; Martin KJ; Flye MW
    J Immunol Methods; 1992 Sep; 154(1):139-41. PubMed ID: 1328392
    [No Abstract]   [Full Text] [Related]  

  • 52. The Good pH probe: non-invasive pH in-line monitoring using Good buffers and Raman spectroscopy.
    Müller DH; Börger M; Thien J; Koß HJ
    Anal Bioanal Chem; 2023 Dec; 415(29-30):7247-7258. PubMed ID: 37982845
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temperature-jump investigation of the kinetics of imidazole substitution on an iron (3) porphyrin in aqueous solution.
    Kolski GB; Plane RA
    J Am Chem Soc; 1972 May; 94(11):3740-4. PubMed ID: 5037980
    [No Abstract]   [Full Text] [Related]  

  • 54. The high-molecular-weight kininogen domain 5 is an intrinsically unstructured protein and its interaction with ferritin is metal mediated.
    Huhn AJ; Parsonage D; Horita DA; Torti FM; Torti SV; Hollis T
    Protein Sci; 2014 Aug; 23(8):1013-22. PubMed ID: 24810540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The C-terminal regions have an important role in the activity of the ferroxidase center and the stability of Chlorobium tepidum ferritin.
    Brito C; Matias C; González-Nilo FD; Watt RK; Yévenes A
    Protein J; 2014 Jun; 33(3):211-20. PubMed ID: 24609571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin.
    Masuda T; Goto F; Yoshihara T; Mikami B
    J Biol Chem; 2010 Feb; 285(6):4049-4059. PubMed ID: 20007325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A study of the mechanism of ferritin formation. The effect of pH, ionic strength and temperature, inhibition by imidazole and kinetic analysis.
    Pâgues E; Pâques A; Crichton RR
    Eur J Biochem; 1980 Jun; 107(2):447-53. PubMed ID: 6249590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ferritin iron mineralization proceeds by different mechanisms in MOPS and imidazole buffers.
    Snow CL; Martineau LN; Hilton RJ; Brown S; Farrer J; Boerio-Goates J; Woodfield BF; Watt RK
    J Inorg Biochem; 2011 Jul; 105(7):972-7. PubMed ID: 21561591
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Imidazole binding to horse metmyoglobin: dependence upon pH and ionic strength.
    Lin J; Vitello LB; Erman JE
    Arch Biochem Biophys; 1998 Apr; 352(2):214-28. PubMed ID: 9587409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 4-nitroimidazole binding to horse metmyoglobin: evidence for preferential anion binding.
    Taylor KC; Vitello LB; Erman JE
    Arch Biochem Biophys; 2000 Oct; 382(2):284-95. PubMed ID: 11068880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.