BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6249814)

  • 1. Changes in affinity of Na+- and K+-transport ATPase for divalent cations during its reaction sequence.
    Fukushima Y; Nakao M
    J Biol Chem; 1980 Aug; 255(16):7813-9. PubMed ID: 6249814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of divalent cation to phosphoenzyme of sodium- and potassium-transport adenosine triphosphatase.
    Fukushima Y; Post RL
    J Biol Chem; 1978 Oct; 253(19):6853-62. PubMed ID: 211132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations.
    Mendlein J; Sachs G
    J Biol Chem; 1989 Nov; 264(31):18512-9. PubMed ID: 2553712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient state in the phosphorylation of sodium- and potassium- transport adenosine triphosphatase by adenosine triphosphate.
    Fukushima Y; Nakao M
    J Biol Chem; 1981 Sep; 256(17):9136-43. PubMed ID: 6267064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition by amine bases or by sodium ions and protection by divalent cations in the hydrolysis of phosphoenzyme of (Na,K)-ATPase.
    Fukushima Y
    J Biol Chem; 1987 Aug; 262(23):11000-5. PubMed ID: 3038903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mono and divalent cations on total and partial reactions catalysed by pig kidney Na,K-ATPase.
    Beaugé L; Campos MA
    J Physiol; 1986 Jun; 375():1-25. PubMed ID: 3025425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational change accompanying transition of ADP-sensitive phosphoenzyme to potassium-sensitive phosphoenzyme of (Na+,K+)-ATPase modified with N-[p-(2-benzimidazolyl)phenyl]maleimide.
    Taniguchi K; Suzuki K; Iida S
    J Biol Chem; 1982 Sep; 257(18):10659-67. PubMed ID: 6286667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature effects on sodium pump phosphoenzyme distribution in human red blood cells.
    Kaplan JH; Kenney LJ
    J Gen Physiol; 1985 Jan; 85(1):123-36. PubMed ID: 2578548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. III. Marked changes in affinities for monovalent cations induced by formation of an ADP-insensitive but no an ADP-Sensitive phosphoenzyme.
    Yamaguchi M; Tonomura Y
    J Biochem; 1980 Nov; 88(5):1387-97. PubMed ID: 6257666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Existence of ADP- and KCl-insensitive phosphoenzyme intermediate of Na+,K(+)-ATPase at alkaline Ph.
    Siagian RR; Hara Y; Nakao M
    Biochem Int; 1990 Oct; 22(1):67-74. PubMed ID: 2177987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (Na+ + K+)-ATPase: confirmation of the three-pool model for the phosphointermediates of Na+-ATPase activity. Estimation of the enzyme-ATP dissociation rate constant.
    Klodos I; Nørby JG
    Biochim Biophys Acta; 1987 Feb; 897(2):302-14. PubMed ID: 3028481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leucine 332 at the boundary between the fourth transmembrane segment and the cytoplasmic domain of Na+,K+-ATPase plays a pivotal role in the ion translocating conformational changes.
    Vilsen B
    Biochemistry; 1997 Oct; 36(43):13312-24. PubMed ID: 9341223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceleration of the rate of fluorescence decrease by high concentrations of ATP under the condition of accumulation of ADP-sensitive phosphoenzyme in Na+,K+-ATPase.
    Taniguchi K; Suzuki K; Sasaki T; Shimokobe H; Iida S
    J Biochem; 1986 Nov; 100(5):1231-9. PubMed ID: 3029053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The acceleration of Na+,K+-ATPase activity by ATP and ATP analogues.
    Suzuki K; Taniguchi K; Iida S
    J Biol Chem; 1987 Aug; 262(24):11752-7. PubMed ID: 3040715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase.
    Wakabayashi S; Shigekawa M
    J Biol Chem; 1987 Aug; 262(24):11524-31. PubMed ID: 2957367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occlusion of cobalt ions within the phosphorylated forms of the Na+-K+ pump isolated from dog kidney.
    Richards DE
    J Physiol; 1988 Oct; 404():497-514. PubMed ID: 2855351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of (Na+ + K+)-ATPase by chromium(III) complexes of nucleotide triphosphates.
    Pauls H; Bredenbröcker B; Schoner W
    Eur J Biochem; 1980 Aug; 109(2):523-33. PubMed ID: 6250846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of divalent cation bound to phosphoenzyme intermediate of sarcoplasmic reticulum ATPase.
    Wakabayashi S; Shigekawa M
    J Biol Chem; 1984 Apr; 259(7):4427-36. PubMed ID: 6231294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (Na+ + K+)-dependent adenosine triphosphatase. Regulation of inorganic phosphate, magnesium ion, and calcium ion interactions with the enzyme by ouabain.
    Askari A; Huang WH; McCormick PW
    J Biol Chem; 1983 Mar; 258(6):3453-60. PubMed ID: 6300045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.