These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6250303)

  • 1. [System for effecting the action of cyclic adenosine monophosphate in skeletal muscle during chicken ontogeny].
    Pertseva MN; Mazina TI; Zheludkova ZP; Kuznetsova LA
    Zh Evol Biokhim Fiziol; 1980; 16(3):234-9. PubMed ID: 6250303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Interrelations of cyclic adenosine monophosphate and calcium in regulating glycogen synthetase in developing skeletal and cardiac muscles in chickens].
    Kuznetsova LA
    Ontogenez; 1977; 8(5):532-7. PubMed ID: 198718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of catecholamines on the Ca2(+)-adenosinetriphosphatase of the sarcoplasmic reticulum in the skeletal muscles in chicken ontogeny].
    Mazina TI; Pevzner RA
    Zh Evol Biokhim Fiziol; 1979; 15(1):22-8. PubMed ID: 95834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reaction between cGMP and cAMP in their effect on muscle carbohydrate metabolism].
    Pertseva MN; Zheludkova ZP; Kuznetsova LA
    Vopr Med Khim; 1978; 24(4):528-33. PubMed ID: 210587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of adrenaline and cyclic 3',5'-adenosine monophosphate on the glycogen synthetase activity of the developing skeletal muscles of chickens].
    Kuznetsova LA; Pertseva MN
    Zh Evol Biokhim Fiziol; 1974; 10(5):440-5. PubMed ID: 4373987
    [No Abstract]   [Full Text] [Related]  

  • 6. [Cyclic adenosine monophosphate and calcium ions in the mechanism of action of catecholamines].
    Pertseva MN
    Usp Sovrem Biol; 1976; 82(4):18-33. PubMed ID: 185835
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect of calcium on glycogen synthetase activity in skeletal muscles and myocardium of chick embryos and chickens].
    Kuznetsova LA; Pertseva MN; Levanovich VV
    Ukr Biokhim Zh (1978); 1978; 50(1):3-9. PubMed ID: 415396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation and inactivation of rat heart glycogen synthase by cAMP-dependent and cAMP-independent protein kinases.
    Grekinis D; Reimann EM; Schlender KK
    Int J Biochem Cell Biol; 1995 Jun; 27(6):565-73. PubMed ID: 7671134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Participation of 3',5'-adenosine monophosphate and calcium in the effect of adrenaline on the carbohydrate metabolism of developing chicken muscles].
    Pertseva MN; Zheludkova ZP; Kuznetsova LA
    Zh Evol Biokhim Fiziol; 1974; 10(6):592-7. PubMed ID: 4375369
    [No Abstract]   [Full Text] [Related]  

  • 10. [Stimulating effect of insulin and epidermal growth factor on activity of protein kinase A, glucose 6-phosphate dehydrogenase and glycogen synthetase in skeletal muscles of chickens and chicken embryos].
    Kuznetsova LA; Plesneva SA; Shpakov AO; Sharova TS
    Zh Evol Biokhim Fiziol; 2004; 40(4):325-33. PubMed ID: 15481371
    [No Abstract]   [Full Text] [Related]  

  • 11. Protein kinases.
    Krebs EG
    Curr Top Cell Regul; 1972; 5():99-133. PubMed ID: 4358204
    [No Abstract]   [Full Text] [Related]  

  • 12. [Cyclic AMP-mediated regulation of calcium transport by cardiac sarcoplasmic reticulum (author's transl)].
    Tada M
    Tanpakushitsu Kakusan Koso; 1975 Aug; 20(10):936-49. PubMed ID: 172974
    [No Abstract]   [Full Text] [Related]  

  • 13. [cAMP-dependence of phosphorylation of the phosphorylase b kinase of the skeletal muscles of rats during physical exercise and training].
    Kalinskiĭ MI; Kondratiuk TP; Kurskiĭ MD
    Biokhimiia; 1982 Dec; 47(12):1988-92. PubMed ID: 6297623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of calcium-activated, cyclic nucleotide-independent protein kinase and adenosine 3':5'-monophosphate-dependent protein kinase as regards the ability to stimulate glycogen breakdown in vitro.
    Kishimoto A; Mori T; Takai Y; Nishizuka Y
    J Biochem; 1978 Jul; 84(1):47-53. PubMed ID: 211121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role of phospholipids in the realization of catecholamine action].
    Pertseva MN; Zheludkova ZP
    Ukr Biokhim Zh (1978); 1978; 50(6):701-5. PubMed ID: 219571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation/activation of phosphorylase b kinase by cAMP/Ca2(+)-independent, autophosphorylation-dependent protein kinase.
    Yu JS; Yang SD
    Biochem Biophys Res Commun; 1995 Feb; 207(1):140-7. PubMed ID: 7857257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of the regulatory subunit of type I adenosine cyclic 3':5'-monophosphate-dependent protein kinase in differentiated N-18 mouse neuroblastoma cells.
    Liu AY; Chan T; Chen KY
    Cancer Res; 1981 Nov; 41(11 Pt 1):4579-87. PubMed ID: 6272981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glycogen metabolic enzymes in the skeletal muscles of the developing chick embryo].
    Kuz'mishcheva EB; Krivopishin IP; Iurovitskiĭ IuG; Mil'man LS
    Ontogenez; 1981; 12(3):266-72. PubMed ID: 6454870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of glucose and the hexosamine biosynthesis pathway on glycogen synthase kinase-3 and other protein kinases that regulate glycogen synthase activity.
    Singh LP; Crook ED
    J Investig Med; 2000 Jul; 48(4):251-8. PubMed ID: 10916283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase.
    Embi N; Rylatt DB; Cohen P
    Eur J Biochem; 1980 Jun; 107(2):519-27. PubMed ID: 6249596
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.