These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 6250358)

  • 1. Cyclic nucleotides and cystic fibrosis.
    Buchwald M; Riordan JR
    Adv Cyclic Nucleotide Res; 1980; 12():243-53. PubMed ID: 6250358
    [No Abstract]   [Full Text] [Related]  

  • 2. Relevance of second messengers in cystic fibrosis.
    Roscher A; Wiesmann UN; Hadorn B
    Monogr Paediatr; 1979; 10():77-83. PubMed ID: 37441
    [No Abstract]   [Full Text] [Related]  

  • 3. Abnormal levels of 3':5'-cyclic AMP in isoproterenol-stimulated fibroblasts from patients with cystic fibrosis.
    Buchwald M
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2899-903. PubMed ID: 183214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased cyclic AMP levels and beta-adrenergic antagonist binding in cystic fibrosis fibroblasts.
    Markovac J; Erickson RP; Hieber V
    Biochem Med; 1981 Dec; 26(3):299-306. PubMed ID: 6174115
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine 3':5'-cyclic AMP in fibroblasts from patients with cystic fibrosis and its relationship to secretion.
    Buchwald M; Mapleson JL
    Mod Probl Paediatr; 1976 Oct 24-27; 19():165-74. PubMed ID: 201834
    [No Abstract]   [Full Text] [Related]  

  • 6. Beta-adrenergic receptor-mediated DNA synthesis in neonatal rat cardiac fibroblasts proceeds via a phosphatidylinositol 3-kinase dependent pathway refractory to the antiproliferative action of cyclic AMP.
    Colombo F; Gosselin H; El-Helou V; Calderone A
    J Cell Physiol; 2003 May; 195(2):322-30. PubMed ID: 12652658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis.
    Marcet B; Boeynaems JM
    Pharmacol Ther; 2006 Dec; 112(3):719-32. PubMed ID: 16828872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in beta adrenergic receptors in submaxillary glands of chronically reserpine- or isoproterenol-treated rats.
    Roscher AA; Wiesmann UN; Honegger UE
    J Pharmacol Exp Ther; 1981 Feb; 216(2):419-24. PubMed ID: 6257891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of ion conductance in human skin fibroblasts.
    Bear CE
    Adv Exp Med Biol; 1991; 290():273-83; discussion 283-5. PubMed ID: 1719764
    [No Abstract]   [Full Text] [Related]  

  • 10. Transforming growth factor beta-1 modulates the number of beta-adrenergic receptors in cardiac fibroblasts.
    Iizuka K; Sano H; Kawaguchi H; Kitabatake A
    J Mol Cell Cardiol; 1994 Apr; 26(4):435-40. PubMed ID: 8072001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified cyclic adenosine monophosphate-mediated sweat rate test for quantitative measure of cystic fibrosis transmembrane regulator (CFTR) function.
    Callen A; Diener-West M; Zeitlin PL; Rubenstein RC
    J Pediatr; 2000 Dec; 137(6):849-55. PubMed ID: 11113843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoantibodies and beta-adrenergic receptors.
    Parker CW
    N Engl J Med; 1981 Nov; 305(20):1212-3. PubMed ID: 6270554
    [No Abstract]   [Full Text] [Related]  

  • 13. beta-Adrenergic receptors and cyclic AMP responses to epinephrine in cultured human fibroblasts at various population densities.
    Pochet RP; Green DA; Goka TJ; Clark RB; Barber R; Dumont JE; Butcher RW
    J Cyclic Nucleotide Res; 1982; 8(2):83-9. PubMed ID: 6294158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actions of adenosine A1 and A2 receptor antagonists on CFTR antibody-inhibited beta-adrenergic mucin secretion response.
    Pereira MM; Lloyd Mills C; Dormer RL; McPherson MA
    Br J Pharmacol; 1998 Oct; 125(4):697-704. PubMed ID: 9831904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of conditionally immortalized epithelial cell lines from CF and non-CF mice.
    Cotton CU
    Methods Mol Med; 2002; 70():551-62. PubMed ID: 11917550
    [No Abstract]   [Full Text] [Related]  

  • 16. [Cyclic AMP and essential arterial hypertension. Role of the adrenergic system].
    Liberatore C; Platania A; Reda G; Lauro R
    Recenti Prog Med; 1980 May; 68(5):473-9. PubMed ID: 6256831
    [No Abstract]   [Full Text] [Related]  

  • 17. A quantitative description of the activation and inhibition of CFTR by potentiators: Genistein.
    Moran O; Zegarra-Moran O
    FEBS Lett; 2005 Jul; 579(18):3979-83. PubMed ID: 15996659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure.
    Chang HR; Tsao DA; Yu HS; Ho CK
    Arch Toxicol; 2005 Jan; 79(1):1-6. PubMed ID: 15502967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imbalance between alpha- and beta-adrenoceptor binding sites in marker cells in cystic fibrosis.
    Tawara K; Alvan G; Strandvik B
    Res Commun Chem Pathol Pharmacol; 1984 Mar; 43(3):515-8. PubMed ID: 6326213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro maturation of the rat reticulocyte beta-adrenoceptor adenylate cyclase system.
    Montandon JB; Porzig H
    Biomed Biochim Acta; 1983; 42(11-12):S197-201. PubMed ID: 6326770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.