These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 6250567)
21. Laser flash photolysis studies of electron transfer mechanisms in cytochromes: an aromatic residue at position 82 is not required for cytochrome c reduction by flavin semiquinones or electron transfer from cytochrome c to cytochrome oxidase. Hazzard JT; Mauk AG; Tollin G Arch Biochem Biophys; 1992 Oct; 298(1):91-5. PubMed ID: 1326255 [TBL] [Abstract][Full Text] [Related]
22. Electron-transfer reactions of photoreduced flavin analogues with c-type cytochromes: quantitation of steric and electrostatic factors. Meyer TE; Watkins JA; Przysiecki CT; Tollin G; Cusanovich MA Biochemistry; 1984 Sep; 23(20):4761-7. PubMed ID: 6093864 [TBL] [Abstract][Full Text] [Related]
23. Laser flash photolysis studies of electron transfer between semiquinone and fully reduced free flavins and horse heart cytochrome c. Ahmad I; Cusanovich MA; Tollin G Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6724-8. PubMed ID: 6273886 [TBL] [Abstract][Full Text] [Related]
24. Structural organization of the Chromatium vinosum reaction center associated c-cytochromes. Tiede DM; Leigh JS; Dutton PL Biochim Biophys Acta; 1978 Sep; 503(3):524-44. PubMed ID: 210808 [TBL] [Abstract][Full Text] [Related]
25. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N; Lê KH; Terrier M; Lederer F Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777 [TBL] [Abstract][Full Text] [Related]
26. Adduct formation between sulfite and the flavin of phototrophic bacterial flavocytochromes c. Kinetics of sequential bleach, recolor, and rebleach of flavin as a function of pH. Meyer TE; Bartsch RG; Cusanovich MA Biochemistry; 1991 Sep; 30(36):8840-5. PubMed ID: 1653608 [TBL] [Abstract][Full Text] [Related]
27. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
28. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum. Kerfeld CA; Chan C; Hirasawa M; Kleis-SanFrancisco S; Yeates TO; Knaff DB Biochemistry; 1996 Jun; 35(24):7812-8. PubMed ID: 8672482 [TBL] [Abstract][Full Text] [Related]
29. Transient kinetics of flavin-photosensitized oxidation of reduced redox proteins. Comparison of c-type cytochromes and plastocyanins. Navarro JA; De la Rosa MA; Tollin G Eur J Biochem; 1991 Jul; 199(1):239-43. PubMed ID: 1648485 [TBL] [Abstract][Full Text] [Related]
30. Laser flash photolysis as a probe of redox protein-membrane interactions: effect of binding of spinach plastocyanin and horse cytochrome c to lipid bilayer vesicles on the kinetics of reduction by flavin semiquinone. Senthilathipan V; Tollin G Biochemistry; 1989 Feb; 28(3):1133-8. PubMed ID: 2540816 [TBL] [Abstract][Full Text] [Related]
31. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain. Matsuda H; Iyanagi T Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372 [TBL] [Abstract][Full Text] [Related]
32. Electron transfer in sulfite oxidase: effects of pH and anions on transient kinetics. Sullivan EP; Hazzard JT; Tollin G; Enemark JH Biochemistry; 1993 Nov; 32(46):12465-70. PubMed ID: 8241137 [TBL] [Abstract][Full Text] [Related]
33. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818 [TBL] [Abstract][Full Text] [Related]
34. Kinetics of intracomplex electron transfer and of reduction of the components of covalent and noncovalent complexes of cytochrome c and cytochrome c peroxidase by free flavin semiquinones. Hazzard JT; Moench SJ; Erman JE; Satterlee JD; Tollin G Biochemistry; 1988 Mar; 27(6):2002-8. PubMed ID: 2837280 [TBL] [Abstract][Full Text] [Related]
35. Magnetic studies of Chromatium flavocytochrome C552. A mechanism for heme-flavin interaction. Strekas TC Biochim Biophys Acta; 1976 Sep; 446(1):179-91. PubMed ID: 9997 [TBL] [Abstract][Full Text] [Related]
36. Laser flash photolysis studies of the kinetics of electron-transfer reactions of Saccharomyces flavocytochrome b2: evidence for conformational gating of intramolecular electron transfer induced by pyruvate binding. Walker MC; Tollin G Biochemistry; 1991 Jun; 30(22):5546-55. PubMed ID: 2036424 [TBL] [Abstract][Full Text] [Related]
37. The rate of internal heme-heme electron transfer in cytochrome C oxidase. Namslauer A; Brändén M; Brzezinski P Biochemistry; 2002 Aug; 41(33):10369-74. PubMed ID: 12173922 [TBL] [Abstract][Full Text] [Related]
38. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
39. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum. Halsey YD; Parson WW Biochim Biophys Acta; 1974 Jun; 347(3):404-16. PubMed ID: 4366890 [No Abstract] [Full Text] [Related]
40. Intramolecular electron transfer in yeast flavocytochrome b2 upon one-electron photooxidation of the fully reduced enzyme: evidence for redox state control of heme-flavin communication. Hazzard JT; McDonough CA; Tollin G Biochemistry; 1994 Nov; 33(45):13445-54. PubMed ID: 7947753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]