BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6250580)

  • 1. Glycolate formation catalyzed by spinach leaf transketolase utilizing the superoxide radical.
    Takabe T; Asami S; Akazawa T
    Biochemistry; 1980 Aug; 19(17):3985-9. PubMed ID: 6250580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymic formation of glycolate in Chromatium. Role of superoxide radical in a transketolase-type mechanism.
    Asami S; Akazawa T
    Biochemistry; 1977 May; 16(10):2202-7. PubMed ID: 193557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of glycolate by oxidation of the 1,2-dihydroxyethyl-thamin-diphosphate intermediate of transketolase with hexacyanoferrate(III) or H2O2.
    Christen P; Gasser A
    Eur J Biochem; 1980; 107(1):73-7. PubMed ID: 6995116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution in chloroplasts.
    Greenstock CL; Miller RW
    Biochim Biophys Acta; 1975 Jul; 396(1):11-6. PubMed ID: 167846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-substrate transketolase-catalyzed reaction.
    Bykova IA; Solovjeva ON; Meshalkina LE; Kovina MV; Kochetov GA
    Biochem Biophys Res Commun; 2001 Jan; 280(3):845-7. PubMed ID: 11162599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
    Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV
    J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and properties of human transketolase.
    Meshalkina LE; Solovjeva ON; Khodak YA; Drutsa VL; Kochetov GA
    Biochemistry (Mosc); 2010 Jul; 75(7):873-80. PubMed ID: 20673211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp.) No. 2201.
    Kato N; Higuchi T; Sakazawa C; Nishizawa T; Tani Y; Yamada H
    Biochim Biophys Acta; 1982 Apr; 715(2):143-50. PubMed ID: 7074134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on indoleamine 2,3-dioxygenase. I. Superoxide anion as substrate.
    Hirata F; Hayaishi O
    J Biol Chem; 1975 Aug; 250(15):5960-6. PubMed ID: 238993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains.
    Sprenger GA; Schörken U; Sprenger G; Sahm H
    Eur J Biochem; 1995 Jun; 230(2):525-32. PubMed ID: 7607225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of glycolate by a reconstituted spinach chloroplast preparation.
    Shain Y; Gibbs M
    Plant Physiol; 1971 Sep; 48(3):325-30. PubMed ID: 16657791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hitherto unknown transketolase-catalyzed reaction.
    Sevostyanova IA; Solovjeva ON; Kochetov GA
    Biochem Biophys Res Commun; 2004 Jan; 313(3):771-4. PubMed ID: 14697258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide anion scavenging capacity measured by a polarographic method. Comparison with a colourimetric method.
    Darmon N; Fernandez Y; Periquet A; Mitjavila S
    Free Radic Res Commun; 1992; 17(2):97-107. PubMed ID: 1334924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of transketolase from rabbit liver and comparison of some of its kinetic properties with transketolase from other sources.
    Masri SW; Ali M; Gubler CJ
    Comp Biochem Physiol B; 1988; 90(1):167-72. PubMed ID: 3396324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleaving of ketosubstrates by transketolase and the nature of the products formed.
    Solov'eva ON; Bykova IA; Meshalkina LE; Kovina MV; Kochetov GA
    Biochemistry (Mosc); 2001 Aug; 66(8):932-6. PubMed ID: 11566066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of tyrosine 129 in the active site of spinach glycolate oxidase.
    Macheroux P; Kieweg V; Massey V; Söderlind E; Stenberg K; Lindqvist Y
    Eur J Biochem; 1993 May; 213(3):1047-54. PubMed ID: 8504801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase.
    Naula C; Alibu VP; Brock JM; Veitch NJ; Burchmore RJ; Barrett MP
    J Biochem Biophys Methods; 2008 Apr; 70(6):1185-7. PubMed ID: 18053578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte.
    Rosen H; Klebanoff SJ
    J Exp Med; 1979 Jan; 149(1):27-39. PubMed ID: 216766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetic properties of transketolase from the rat liver in a reaction with xylulose-5-phosphate and ribose-5-phosphate].
    Gorbach ZV; Kubyshin VL
    Biokhimiia; 1989 Dec; 54(12):1980-5. PubMed ID: 2633802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.