These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6250649)

  • 21. [Effect of adrenaline on the potassium content in dog cardiac mitochondria and relation of potassium transport to respiration and oxidative phosphorylation].
    Dolgov VV; Raĭskina ME; Antonov VF
    Biofizika; 1974; 19(6):1025-9. PubMed ID: 4441524
    [No Abstract]   [Full Text] [Related]  

  • 22. Voltage-sensitive cyanine dye fluorescence signals in lymphocytes: plasma membrane and mitochondrial components.
    Wilson HA; Seligmann BE; Chused TM
    J Cell Physiol; 1985 Oct; 125(1):61-71. PubMed ID: 2413057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential movement of ions in artificial phospholipid vesicles.
    Sedgwick EG; Bragg PD
    FEBS Lett; 1990 Oct; 272(1-2):81-4. PubMed ID: 1699806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Turnover numbers for ionophore-catalyzed cation transport across the mitochondrial membrane.
    Haynes DH; Wiens T; Pressman BC
    J Membr Biol; 1974; 18(1):23-38. PubMed ID: 4855276
    [No Abstract]   [Full Text] [Related]  

  • 25. [Proof of the possibility of univalent cation active transport in rat liver mitochondria].
    Skul'skiĭ IA; Glazunov VV; Savina MV
    Dokl Akad Nauk SSSR; 1979; 246(2):504-8. PubMed ID: 582434
    [No Abstract]   [Full Text] [Related]  

  • 26. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Oxidative phosphorylation and membrane potential].
    Skulachev VP; Iasaĭtiene DK
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1971; 9(93):27-36. PubMed ID: 4143973
    [No Abstract]   [Full Text] [Related]  

  • 28. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translocation of protons and potassium ions across the mitochondrial membrane of respiring and respiration-deficient yeasts.
    Kovac L; Groot GS; Racker E
    Biochim Biophys Acta; 1972 Jan; 256(1):55-65. PubMed ID: 4550631
    [No Abstract]   [Full Text] [Related]  

  • 30. Conformational model of active transport.
    Young JH; Blondin GA; Vanderkooi G; Green DE
    Proc Natl Acad Sci U S A; 1970 Oct; 67(2):550-9. PubMed ID: 5289009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The penetration of the membrane of brain mitochondria by anions.
    Minn A; Gayet J; Delorme P
    J Neurochem; 1975 Jan; 24(1):149-56. PubMed ID: 1110357
    [No Abstract]   [Full Text] [Related]  

  • 32. The membrane potential of Ehrlich ascites tumor cells: an evaluation of the null point method.
    Smith TC; Robinson SC
    J Cell Physiol; 1981 Mar; 106(3):399-406. PubMed ID: 7217220
    [No Abstract]   [Full Text] [Related]  

  • 33. Mg2+ control of respiration in isolated rat liver mitochondria.
    Panov A; Scarpa A
    Biochemistry; 1996 Oct; 35(39):12849-56. PubMed ID: 8841128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Energetic role of the plasma and mitochondrial membranes of neurons in antenatal pathology with increased convulsive susceptibility (review)].
    Pogodaev KI
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1985; 85(3):450-5. PubMed ID: 2581406
    [No Abstract]   [Full Text] [Related]  

  • 35. Ion transport and permeability in the mouse egg.
    Powers RD; Tupper JT
    Exp Cell Res; 1975 Mar; 91(2):413-21. PubMed ID: 1168582
    [No Abstract]   [Full Text] [Related]  

  • 36. Treatment of breast tumor cells in vitro with the mitochondrial membrane potential dissipater valinomycin increases 18F-FDG incorporation.
    Smith TA; Blaylock MG
    J Nucl Med; 2007 Aug; 48(8):1308-12. PubMed ID: 17673425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for a channel for the electrogenic transport of chloride ion in the rat hepatocyte.
    Bear CE; Petrunka CN; Strasberg SM
    Hepatology; 1985; 5(3):383-91. PubMed ID: 2581880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of valinomycin on the respiration and transport of potassium ions in the mitochondria of yeast fungi].
    Murav'eva TI; Riabova ID; Oreshnikova NA; Novikova MA
    Biokhimiia; 1973; 38(4):845-50. PubMed ID: 4791865
    [No Abstract]   [Full Text] [Related]  

  • 39. Induction of electroneutral exchanges of H+ with K+ in rat liver mitochondria.
    Azzone GF; Bortolotto F; Zanotti A
    FEBS Lett; 1978 Dec; 96(1):135-40. PubMed ID: 365572
    [No Abstract]   [Full Text] [Related]  

  • 40. Potassium channel openers depolarize hippocampal mitochondria.
    Debska G; May R; Kicińska A; Szewczyk A; Elger CE; Kunz WS
    Brain Res; 2001 Feb; 892(1):42-50. PubMed ID: 11172747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.