BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6250703)

  • 1. Hormone-induced filopodium formation and movement of pigment, carotenoid droplets, into newly formed filopodia.
    Lo SJ; Tchen TT; Taylor JD
    Cell Tissue Res; 1980; 210(3):371-82. PubMed ID: 6250703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural demonstration of hormone-induced movement of carotenoid droplets and endoplasmic reticulum in xanthophores of the goldfish, Carassius auratus L.
    Obika M; Lo SJ; Tchen TT; Taylor JD
    Cell Tissue Res; 1978 Jul; 190(3):409-16. PubMed ID: 210950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rearrangements of pterinosomes and cytoskeleton accompanying pigment dispersion in goldfish xanthophores.
    Palazzo RE; Lynch TJ; Lo SJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 13(1):9-20. PubMed ID: 2543509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin-dependent carotenoid droplet dispersion in permeabilized cultured goldfish xanthophores.
    Yu FX; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1990; 15(3):139-46. PubMed ID: 2157551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the distribution of carotenoid droplets in goldfish xanthophores and possible implication to secretory processes.
    Tchen TT; Lo SJ; Lynch TJ; Palazzo RE; Peng G; Walker GR; Wu BY; Yu FX; Taylor JD
    Cell Motil Cytoskeleton; 1988; 10(1-2):143-52. PubMed ID: 2972398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunofluorescence evidence for cytoskeletal rearrangement accompanying pigment redistribution in goldfish xanthophores.
    Walker GR; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):458-68. PubMed ID: 2560413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormone-induced dispersion or aggregation of carotenoid-containing smooth endoplasmic reticulum in cultured xanthophores from the goldfish, Carrassius auratus L.
    Winchester JD; Ngo F; Tchen TT; Taylor JD
    Endocr Res Commun; 1976; 3(5):335-42. PubMed ID: 186249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cAMP-independent and cAMP-dependent protein phosphorylations by isolated goldfish xanthophore cytoskeletons: evidence for the association of cytoskeleton with a carotenoid droplet protein.
    Palazzo RE; Lynch TJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 13(1):21-9. PubMed ID: 2543507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of the carotenoid droplet protein p57 by the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase and the effect of fluoride.
    Yang CF; Zeng ZC; Chou SC; Yu FX; Taylor JD; Tchen TT
    Pigment Cell Res; 1989; 2(5):408-13. PubMed ID: 2555810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase.
    Lynch TJ; Wu BY; Taylor JD; Tchen TT
    J Biol Chem; 1986 Mar; 261(9):4212-6. PubMed ID: 3005326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial characterization of a carotenoid droplet ATPase and its possible significance in carotenoid droplet dispersion in goldfish xanthophores.
    Wu BY; Yu FX; Lynch TJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1990; 15(3):147-55. PubMed ID: 2138933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of anterogin, a protein factor necessary for the dispersion of carotenoid droplets in permeabilized xanthophores of goldfish.
    Zeng ZC; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):485-90. PubMed ID: 2533883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of microtubules in pigment translocation in goldfish xanthophores.
    Chen JS; Wang SM
    Arch Histol Cytol; 1993 Dec; 56(5):451-8. PubMed ID: 8129980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel filament system in goldfish xanthophores.
    Wang SM; Chen JS; Fong TH; Hsu SY; Lim SS
    Cell Motil Cytoskeleton; 1997; 36(3):216-27. PubMed ID: 9067617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural immunogold localization of some organelle-transport relevant proteins in wholemounted permeabilized nonextracted goldfish xanthophores.
    Kimler VA; Taylor JD
    Pigment Cell Res; 1995 Apr; 8(2):75-82. PubMed ID: 7659680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis.
    Hall PF; Almahbobi G
    Microsc Res Tech; 1997 Mar; 36(6):463-79. PubMed ID: 9142693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro assembly of filopodia-like bundles.
    Vignjevic D; Peloquin J; Borisy GG
    Methods Enzymol; 2006; 406():727-39. PubMed ID: 16472701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrangement of radial actin bundles in the growth cone of Aplysia bag cell neurons shows the immediate past history of filopodial behavior.
    Katoh K; Hammar K; Smith PJ; Oldenbourg R
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7928-31. PubMed ID: 10393924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization of myosin and actin in rapid frozen nerve growth cones.
    Bridgman PC; Dailey ME
    J Cell Biol; 1989 Jan; 108(1):95-109. PubMed ID: 2642912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.