These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6250883)

  • 61. Phosphodiesterase-probes show distinct defects in rd mice and Irish setter dog disorders.
    Lee RH; Lieberman BS; Hurwitz RL; Lolley RN
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1569-79. PubMed ID: 2997075
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [The effect of cyclic 3',5'-adenosine monophosphoric acid on release of Na and K from the external segments of retinal rods].
    Dumler IL; Etingof RN
    Biokhimiia; 1973; 38(2):408-11. PubMed ID: 4360976
    [No Abstract]   [Full Text] [Related]  

  • 63. ATP can promote activation and deactivation of the rod cGMP-phosphodiesterase. Kinetic light scattering on intact rod outer segments.
    Kamps KM; Hofmann KP
    FEBS Lett; 1986 Nov; 208(2):241-7. PubMed ID: 3023137
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phosphorylation of rhodopsin: most rhodopsin molecules are not phosphorylated.
    Shichi H; Somers RL; O'Brien PJ
    Biochem Biophys Res Commun; 1974 Nov; 61(1):217-21. PubMed ID: 4280307
    [No Abstract]   [Full Text] [Related]  

  • 65. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D; Hofmann KP
    FEBS Lett; 1981 Dec; 136(2):201-7. PubMed ID: 7327258
    [No Abstract]   [Full Text] [Related]  

  • 66. Cyclic nucleotide metabolism in human photoreceptors.
    Pannbacker RG
    Invest Ophthalmol; 1974 Jul; 13(7):535-8. PubMed ID: 4152146
    [No Abstract]   [Full Text] [Related]  

  • 67. Phosphorylation of rhodopsin in bovine photoreceptor membranes. A dark reaction after illumination.
    Kühn H; Cook JH; Dreyer WJ
    Biochemistry; 1973 Jun; 12(13):2495-502. PubMed ID: 4709944
    [No Abstract]   [Full Text] [Related]  

  • 68. Role of light and rhodopsin phosphorylation in control of permeability of retinal rod outer segment disks to Ca2plus.
    Weller M; Virmaux N; Mandel P
    Nature; 1975 Jul; 256(5512):68-70. PubMed ID: 1134587
    [No Abstract]   [Full Text] [Related]  

  • 69. Regulation of retinal transducin by C-terminal peptides of rhodopsin.
    Takemoto DJ; Takemoto LJ; Hansen J; Morrison D
    Biochem J; 1985 Dec; 232(3):669-72. PubMed ID: 3867351
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules.
    Aton BR
    Biochemistry; 1986 Feb; 25(3):677-80. PubMed ID: 3955023
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Character and distribution of ATP-ase activity in a suspension of photoreceptor outer segments and in rhodopsin extract].
    Fedorovich IB; Ostrovskiĭ MA
    Biofizika; 1968; 13(3):449-55. PubMed ID: 4247695
    [No Abstract]   [Full Text] [Related]  

  • 72. Squid rhodopsin and GTP-binding protein crossreact with vertebrate photoreceptor enzymes.
    Saibil HR; Michel-Villaz M
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5111-5. PubMed ID: 6147847
    [TBL] [Abstract][Full Text] [Related]  

  • 73. On the rhodopsin cycle.
    Daemen FJ; Rotmans JP; Bonting SL
    Exp Eye Res; 1974 Jan; 18(1):97-103. PubMed ID: 4150277
    [No Abstract]   [Full Text] [Related]  

  • 74. Experimental uveitis induced by products of activated lymphocytes: intraocular effects of rhodopsin-induced lymphokines.
    Meyers-Elliott RH; Sumner HL
    Cell Immunol; 1982 Jan; 66(2):240-53. PubMed ID: 7066994
    [No Abstract]   [Full Text] [Related]  

  • 75. Electrophysiological methods for measurement of activation of phototransduction by bleached visual pigment in salamander photoreceptors.
    Cornwall MC; Jones GJ; Kefalov VJ; Fain GL; Matthews HR
    Methods Enzymol; 2000; 316():224-52. PubMed ID: 10800678
    [No Abstract]   [Full Text] [Related]  

  • 76. Light-induced conformational changes in cattle rhodopsin as probed by measurements of the interface potential.
    Trissl HW
    Photochem Photobiol; 1979 Mar; 29(3):579-88. PubMed ID: 441131
    [No Abstract]   [Full Text] [Related]  

  • 77. Comparative study of wild-type and rd10 mice reveals transient intrinsic optical signal response before phosphodiesterase activation in retinal photoreceptors.
    Lu Y; Kim TH; Yao X
    Exp Biol Med (Maywood); 2020 Feb; 245(4):360-367. PubMed ID: 31852239
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The fluorescence from the tryptophans of rhodopsin.
    Ebrey TG
    Photochem Photobiol; 1972 Jun; 15(6):585-8. PubMed ID: 5034101
    [No Abstract]   [Full Text] [Related]  

  • 79. The photoreceptor structures.
    WOLKEN JJ
    Int Rev Cytol; 1961; 11():195-218. PubMed ID: 14008073
    [No Abstract]   [Full Text] [Related]  

  • 80. Magic angle spinning NMR of G protein-coupled receptors.
    Chandler B; Todd L; Smith SO
    Prog Nucl Magn Reson Spectrosc; 2022 Feb; 128():25-43. PubMed ID: 35282868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.