These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 6250967)

  • 1. The kinetics of the interaction of a helix-destabilizing protein from roe-deer liver with DNA and the influence of phosphorylation.
    Szopa J; Jańska H
    Hoppe Seylers Z Physiol Chem; 1980 Aug; 361(8):1235-41. PubMed ID: 6250967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A poly d(A-T)-unwinding glycoprotein from roe-deer liver.
    Szopa J; Jańska H
    Biochem Biophys Res Commun; 1979 Sep; 90(2):398-404. PubMed ID: 228660
    [No Abstract]   [Full Text] [Related]  

  • 3. A deoxyribonucleic acid unwinding protein isolated from regenerating rat liver. Physical and functional properties.
    Duguet M; de Recondo AM
    J Biol Chem; 1978 Mar; 253(5):1660-6. PubMed ID: 203598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A basic isozyme of yeast glyceraldehyde-3-phosphate dehydrogenase with nucleic acid helix-destabilizing activity.
    Karpel RL; Burchard AC
    Biochim Biophys Acta; 1981 Jul; 654(2):256-67. PubMed ID: 6269621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of dephosphorylation on the properties of a helix-destabilizing protein from meiotic cells and its partial reversal by a protein kinase.
    Hotta Y; Stern H
    Eur J Biochem; 1979 Mar; 95(1):31-8. PubMed ID: 222579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between the adenovirus DNA-binding protein and double-stranded DNA.
    Fowlkes DM; Lord ST; Linné T; Pettersson U; Philipson L
    J Mol Biol; 1979 Aug; 132(2):163-80. PubMed ID: 231660
    [No Abstract]   [Full Text] [Related]  

  • 7. Involvement of basic amino acids in the activity of a nucleic acid helix-destabilizing protein.
    Karpel RL; Merkler DJ; Flowers BK; Delahunty MD
    Biochim Biophys Acta; 1981 Jun; 654(1):42-51. PubMed ID: 6268166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions.
    Nadler SG; Merrill BM; Roberts WJ; Keating KM; Lisbin MJ; Barnett SF; Wilson SH; Williams KR
    Biochemistry; 1991 Mar; 30(11):2968-76. PubMed ID: 1848781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of protein net charge on the nucleic acid helix-destabilizing activity of various pancreatic ribonucleases.
    Carsana A; Furia A; Libonati M
    Mol Cell Biochem; 1983; 56(1):89-92. PubMed ID: 6685223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit.
    Georgaki A; Hübscher U
    Nucleic Acids Res; 1993 Aug; 21(16):3659-65. PubMed ID: 8396234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A helix-destabilizing protein substrate devoid of heterocyclic bases.
    Karpel RL; Yrttimaa VA; Patel GL
    Biochem Biophys Res Commun; 1981 May; 100(2):760-8. PubMed ID: 6268075
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the DNA-dependent ATPase and a DNA unwinding activity associated with the yeast DNA polymerase alpha complex.
    Biswas EE; Ewing CM; Biswas SB
    Biochemistry; 1993 Mar; 32(12):3020-6. PubMed ID: 8384485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple deoxyribonucleic acid dependent adenosinetriphosphatases in FM3A cells. Characterization of an adenosinetriphosphatase that prefers poly [d(A-T)] as cofactor.
    Tawaragi Y; Enomoto T; Watanabe Y; Hanaoka F; Yamada M
    Biochemistry; 1984 Jan; 23(3):529-33. PubMed ID: 6142725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure of DNA bases induced by the interaction of DNA and calf thymus DNA helix-destabilizing protein.
    Kohwi-Shigematsu T; Enomoto T; Yamada MA; Nakanishi M; Tsuboi M
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4689-93. PubMed ID: 216994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-amplitude picosecond anisotropy decay of the intrinsic fluorescence of double-stranded DNA.
    Georghiou S; Bradrick TD; Philippetis A; Beechem JM
    Biophys J; 1996 Apr; 70(4):1909-22. PubMed ID: 8785350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the DNA unwinding activity of human DNA helicase II/Ku by phosphorylation.
    Ochem AE; Rechreche H; Skopac D; Falaschi A
    Arch Biochem Biophys; 2008 Feb; 470(1):1-7. PubMed ID: 18053790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of translocation and kinetics of DNA unwinding by the helicase RecG.
    Martinez-Senac MM; Webb MR
    Biochemistry; 2005 Dec; 44(51):16967-76. PubMed ID: 16363810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular dichroism studies of the interaction of a limited hydrolysate of T4 gene 32 protein with T4 DNA and poly[d(A-T)].poly[d(A-T)].
    Greve J; Maestre MF; Moise H; Hosoda J
    Biochemistry; 1978 Mar; 17(5):893-8. PubMed ID: 204332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient unwinding of triplex DNA by a DNA helicase.
    Maine IP; Kodadek T
    Biochem Biophys Res Commun; 1994 Nov; 204(3):1119-24. PubMed ID: 7980585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.