BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6251349)

  • 1. A hypothesis for a role for unsaturated fatty acids in electron transport and its potential application to understanding the mitochondrial respiratory chain.
    Peterson DA; Gerrard JM
    Med Hypotheses; 1980 May; 6(5):491-9. PubMed ID: 6251349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple-bonded unsaturated fatty acids are redox active compounds.
    Peterson DA; Reeve HL; Nelson D; Archer SL; Weir EK
    Lipids; 2001 Apr; 36(4):431-3. PubMed ID: 11383698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electron transfer by unsaturated fatty acids and superoxide dismutase.
    Peterson DA
    Free Radic Res Commun; 1991; 12-13 Pt 1():161-6. PubMed ID: 1649083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A direct comparison between peroxisomal and mitochondrial preferences for fatty-acyl beta-oxidation predicts channelling of medium-chain and very-long-chain unsaturated fatty acids to peroxisomes.
    Alexson SE; Cannon B
    Biochim Biophys Acta; 1984 Oct; 796(1):1-10. PubMed ID: 6091766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases.
    Kitaguchi H; Ohkubo K; Ogo S; Fukuzumi S
    J Phys Chem A; 2006 Feb; 110(5):1718-25. PubMed ID: 16451000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of unsaturated fatty acid depletion on the proton permeability and energetic functions of yeast mitochondria.
    Haslam JM; Fellows NF
    Biochem J; 1977 Sep; 166(3):565-70. PubMed ID: 145859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenesis of mitochondria. The effects of altered membrane lipid composition on cation transport by mitochondria of Saccharomyces cerevisiae.
    Haslam JM; Spithill TW; Linnane AW; Chappell JB
    Biochem J; 1973 Aug; 134(4):949-57. PubMed ID: 4587074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of an arachidonic acid hydroperoxide into epoxyhydroxy and trihydroxy fatty acids by liver microsomal cytochrome P-450.
    Weiss RH; Arnold JL; Estabrook RW
    Arch Biochem Biophys; 1987 Jan; 252(1):334-8. PubMed ID: 3813540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase.
    Hazzard JT; Rong SY; Tollin G
    Biochemistry; 1991 Jan; 30(1):213-22. PubMed ID: 1846288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids.
    Lea W; Abbas AS; Sprecher H; Vockley J; Schulz H
    Biochim Biophys Acta; 2000 May; 1485(2-3):121-8. PubMed ID: 10832093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of key enzymes in microsomal and mitochondrial membranes depends on the redox reactions involving lipid radicals.
    Dmitriev LF
    Membr Cell Biol; 2001 Jul; 14(5):649-62. PubMed ID: 11699868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme.
    Mauger M; Ferreri C; Chatgilialoglu C; Seemann M
    J Inorg Biochem; 2021 Nov; 224():111564. PubMed ID: 34418715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome P450BM-3 (CYP102): regiospecificity of oxidation of omega-unsaturated fatty acids and mechanism-based inactivation.
    Shirane N; Sui Z; Peterson JA; Ortiz de Montellano PR
    Biochemistry; 1993 Dec; 32(49):13732-41. PubMed ID: 8257708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of transmembrane ion transport by reaction products of phospholipase A2. II. Effects of arachidonic acid and other fatty acids on mitochondrial Ca2+ transport.
    Rustenbeck I; Lenzen S
    Biochim Biophys Acta; 1989 Jun; 982(1):147-55. PubMed ID: 2500979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cis/trans isomerase of unsaturated fatty acids of Pseudomonas putida P8: evidence for a heme protein of the cytochrome c type.
    Holtwick R; Keweloh H; Meinhardt F
    Appl Environ Microbiol; 1999 Jun; 65(6):2644-9. PubMed ID: 10347055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial respiratory chain of Tetrahymena pyriformis: the properties of submitochondrial particles and the soluble b and c type pigments.
    Kilpatrick L; Erecińska M
    Biochim Biophys Acta; 1977 Dec; 462(3):515-30. PubMed ID: 202305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible mechanism of mitochondrial dysfunction during cerebral ischemia: inhibition of mitochondrial respiration activity by arachidonic acid.
    Takeuchi Y; Morii H; Tamura M; Hayaishi O; Watanabe Y
    Arch Biochem Biophys; 1991 Aug; 289(1):33-8. PubMed ID: 1654847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa.
    Koppers AJ; Garg ML; Aitken RJ
    Free Radic Biol Med; 2010 Jan; 48(1):112-9. PubMed ID: 19837155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: its possible implications.
    Shinomura T; Asaoka Y; Oka M; Yoshida K; Nishizuka Y
    Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5149-53. PubMed ID: 1905018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.