These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6251509)

  • 1. Neutron irradiation of bacteria in the presence and absence of secondary charged-particle equilibrium.
    Lunec J; Cramp WA; Hornsey S
    Radiat Res; 1980 Sep; 83(3):607-20. PubMed ID: 6251509
    [No Abstract]   [Full Text] [Related]  

  • 2. [Binucleate cell formation after fast neutron and alpha-particle irradiation (author's transl)].
    Kura S
    Fukuoka Igaku Zasshi; 1980 Nov; 71(11):593-99. PubMed ID: 7239415
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of the secondary charged-particle spectrum on cellular response to fast neutrons.
    Bewley DK; McNally NJ; Page BC
    Radiat Res; 1974 Apr; 58(1):111-21. PubMed ID: 10876612
    [No Abstract]   [Full Text] [Related]  

  • 4. Dose inhomogeneities for photons and neutrons near interfaces.
    Broerse JJ; Zoetelief J
    Radiat Prot Dosimetry; 2004; 112(4):509-17. PubMed ID: 15623886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of neutrons and secondary charged particles with tissue: secondary particle spectra.
    Caswell RS; Coyne JJ
    Radiat Res; 1972 Dec; 52(3):448-70. PubMed ID: 4646440
    [No Abstract]   [Full Text] [Related]  

  • 6. Criteria for the applicability of LET.
    Kellerer AM; Chmelevsky D
    Radiat Res; 1975 Aug; 63(2):226-34. PubMed ID: 1144688
    [No Abstract]   [Full Text] [Related]  

  • 7. Differences in repair in heterogeneous cell populations in vivo and in vitro following high LET irradiation (neutrons).
    Hornsey S; Lunec J; Griffin C
    Br J Cancer Suppl; 1984; 6():145-9. PubMed ID: 6582902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physical and biological parameters of interest for evaluating the possible use of pi-mesons, neutrons and charged particles in radiotherapy (author's transl)].
    Jung H; Zimmer KG
    Rontgenblatter; 1974 Aug; 27(8):381-402. PubMed ID: 4214365
    [No Abstract]   [Full Text] [Related]  

  • 9. Calculations related to the possible use of photons, neutrons, negatively charged pions, protons, and alpha particles in radiotherapy.
    Alsmiller RG; Santoro RT; Armstrong TW; Barish J; Chandler KC; Chapman GT
    Radiat Res; 1974 Dec; 60(3):369-87. PubMed ID: 10881718
    [No Abstract]   [Full Text] [Related]  

  • 10. Glimpses of particle radiobiology.
    Raju MR
    Strahlenther Onkol; 1990 Jan; 166(1):2-5. PubMed ID: 2154045
    [No Abstract]   [Full Text] [Related]  

  • 11. Calculation of energy distributions of charged particles produced by neutrons from 0.14 to 65 MeV in tissue substitutes.
    Tsuda S; Nakane Y; Yamaguchi Y
    Radiat Prot Dosimetry; 2007; 126(1-4):174-7. PubMed ID: 17569688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computed dose distributions across air-tissue, polythene-tissue, and graphite-tissue interfaces for 14-MeV neutrons.
    Bhatia DP; Nagarajan PS
    Radiat Res; 1977 Feb; 69(2):197-209. PubMed ID: 840998
    [No Abstract]   [Full Text] [Related]  

  • 13. Interpretation of cytogenetic damage induced in the germ line of male mice exposed for over 1 year to 239Pu alpha particles, fission neutrons, or 60Co gamma rays.
    Grahn D; Lee CH; Farrington BF
    Radiat Res; 1983 Sep; 95(3):566-83. PubMed ID: 6611862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation.
    Pignol JP; Slabbert J
    Can J Physiol Pharmacol; 2001 Feb; 79(2):189-95. PubMed ID: 11233567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Possibilities and prospects of radiotherapy using densely ionized particles and neutrons].
    Scheer KE
    Strahlentherapie; 1974 Nov; 148(5):440-6. PubMed ID: 4216988
    [No Abstract]   [Full Text] [Related]  

  • 16. Cancer radiotherapy in the light of progress in radiation physics.
    Baarli J
    Curr Top Radiat Res Q; 1973 Oct; 9(1):94-100. PubMed ID: 4800969
    [No Abstract]   [Full Text] [Related]  

  • 17. Radiobiology of heavy particle radiation therapy: cellular studies.
    Hall EJ
    Radiology; 1973 Jul; 108(1):119-29. PubMed ID: 4196726
    [No Abstract]   [Full Text] [Related]  

  • 18. Calculations of charged-particle recoils, slowing-down spectra, LET and event-size distributions for fast neutrons and comparisons with measurements.
    Borak TB; Stinchcomb TG
    Phys Med Biol; 1979 Jan; 24(1):18-36. PubMed ID: 432267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen as a product of water radiolysis in high-LET tracks. II. Radiobiological implications.
    Baverstock KF; Burns WG
    Radiat Res; 1981 Apr; 86(1):20-33. PubMed ID: 7012902
    [No Abstract]   [Full Text] [Related]  

  • 20. Neutron quality parameters versus energy below 4 MeV from microdosimetric calculations.
    Stinchcomb TG; Borak TB
    Radiat Res; 1983 Jan; 93(1):1-18. PubMed ID: 6823502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.