These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6251748)

  • 41. Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools.
    Weinberg G; Ullman B; Martin DW
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2447-51. PubMed ID: 7017732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Activation of deoxyribonucleotide synthesis by radioprotectants and antioxidants as a key stage in formation of body resistance to DNA-damaging factors].
    Sharygin VL; Pulatova MK; Shliakova TG; Mitrokhin IuI; Todorov IN
    Izv Akad Nauk Ser Biol; 2005; (4):401-22. PubMed ID: 16212261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the mechanism of deoxyribonucleoside toxicity in human T-lymphoblastoid cells. Reversal of growth inhibition by addition of cytidine.
    Dahbo Y; Eriksson S
    Eur J Biochem; 1985 Aug; 150(3):429-34. PubMed ID: 3874778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellular regulation of ribonucleotide reductase in eukaryotes.
    Guarino E; Salguero I; Kearsey SE
    Semin Cell Dev Biol; 2014 Jun; 30():97-103. PubMed ID: 24704278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of deoxycytidine rescue of thymidine toxicity in human T-leukemic lymphocytes.
    Fox RM; Tripp EH; Tattersall MH
    Cancer Res; 1980 May; 40(5):1718-21. PubMed ID: 6989492
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature-sensitive DNA mutant of Chinese hamster ovary cells with a thermolabile ribonucleotide reductase activity.
    Wojcik BE; Dermody JJ; Ozer HL; Mun B; Mathews CK
    Mol Cell Biol; 1990 Nov; 10(11):5688-99. PubMed ID: 2233712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of ribonucleotide reductase activity in mammalian cells.
    Cory JG; Sato A
    Mol Cell Biochem; 1983; 53-54(1-2):257-66. PubMed ID: 6353195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance.
    Schmidt TT; Sharma S; Reyes GX; Gries K; Gross M; Zhao B; Yuan JH; Wade R; Chabes A; Hombauer H
    Nucleic Acids Res; 2019 Jan; 47(1):237-252. PubMed ID: 30462295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell cycle-dependent metabolism of pyrimidine deoxynucleoside triphosphates in CEM cells.
    Bianchi V; Borella S; Rampazzo C; Ferraro P; Calderazzo F; Bianchi LC; Skog S; Reichard P
    J Biol Chem; 1997 Jun; 272(26):16118-24. PubMed ID: 9195907
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Defective DNA replication and repair associated with decreases in deoxyribonucleotide pools in a mouse cell mutant with thermolabile ubiquitin-activating enzyme E1.
    Aoki F; Nakabayashi K; Wataya Y; Kankawa S; Kaneda S; Ayusawa D; Seno T
    J Biochem; 1999 Nov; 126(5):845-51. PubMed ID: 10544276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of azidocytidine on DNA synthesis and deoxynucleotide pools of mouse fibroblast cell lines.
    Akerblom L; Pontis E; Reichard P
    J Biol Chem; 1982 Jun; 257(12):6776-82. PubMed ID: 7085602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ribonucleotide reductase: an important enzyme in the replication of herpes simplex virus type 1 and a target for antiviral chemotherapy.
    Prichard MN; Shipman C
    Chemotherapy; 1995; 41(5):384-95. PubMed ID: 8521741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzyme kinetics of the mitochondrial deoxyribonucleoside salvage pathway are not sufficient to support rapid mtDNA replication.
    Gandhi VV; Samuels DC
    PLoS Comput Biol; 2011 Aug; 7(8):e1002078. PubMed ID: 21829339
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell cycle regulation of ribonucleoside diphosphate reductase activity in permeable mouse L cells and in extracts.
    Kucera R; Brown CL; Paulus H
    J Cell Physiol; 1983 Nov; 117(2):158-68. PubMed ID: 6355126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interrelations between substrate cycles and de novo synthesis of pyrimidine deoxyribonucleoside triphosphates in 3T6 cells.
    Bianchi V; Pontis E; Reichard P
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):986-90. PubMed ID: 3456577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deoxyribonucleoside triphosphate pools of herpes simplex virus infected cells: the influence of selective antiherpes agents and the role of the deaminase pathway.
    Aduma PJ; Gupta SV; Stuart AL; Tourigny G
    Biochem Cell Biol; 1991; 69(5-6):409-14. PubMed ID: 1654943
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hypermutability and error catastrophe due to defects in ribonucleotide reductase.
    Ahluwalia D; Schaaper RM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18596-601. PubMed ID: 24167285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deoxyribonucleotides as genetic and metabolic regulators.
    Mathews CK
    FASEB J; 2014 Sep; 28(9):3832-40. PubMed ID: 24928192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vaccinia virus ribonucleotide reductase. Correlation between deoxyribonucleotide supply and demand.
    Howell ML; Roseman NA; Slabaugh MB; Mathews CK
    J Biol Chem; 1993 Apr; 268(10):7155-62. PubMed ID: 8463252
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deoxyribonucleoside triphosphate pools in cells infected with deoxypyrimidine kinaseless herpes simplex virus.
    Jamieson AT; Bjursell G
    J Gen Virol; 1976 Apr; 31(1):115-23. PubMed ID: 177723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.