BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6251914)

  • 1. Inhibitory effect of glucose and adenosine 3',5'-monophosphate on the synthesis of inducible N-acetylglucosamine catabolic enzymes in yeast.
    Singh B; Guptaroy B; Hasan G; Datta A
    Biochim Biophys Acta; 1980 Oct; 632(3):345-53. PubMed ID: 6251914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose repression of the inducible catabolic pathway for N-acetylglucosamine in yeast.
    Singh BR; Datta A
    Biochem Biophys Res Commun; 1978 Sep; 84(1):58-64. PubMed ID: 215141
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of N-acetylglucosamine uptake in yeast.
    Singh B; Datta A
    Biochim Biophys Acta; 1979 Oct; 557(1):248-58. PubMed ID: 398716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducible N-acetyglucosamine-binding protein in yeasts.
    Singh B; Biswas M; Datta A
    J Bacteriol; 1980 Oct; 144(1):1-6. PubMed ID: 6998941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans.
    Natarajan K; Rai YP; Datta A
    Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of glucosamine-6-phosphate deaminase synthesis in yeast.
    Singh B; Datta A
    Biochim Biophys Acta; 1979 Feb; 583(1):28-35. PubMed ID: 369615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of N-acetylglucosamine-catabolic pathway in spheroplasts of Candida albicans.
    Singh B; Datta A
    Biochem J; 1979 Feb; 178(2):427-31. PubMed ID: 220965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans.
    Sullivan PA; Shepherd MG
    J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turnover of inducible N-acetylglucosamine catabolic enzymes in Candida albicans.
    Biswas M; Singh B; Rai YP; Datta A
    Indian J Exp Biol; 1982 Nov; 20(11):829-34. PubMed ID: 6762985
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for a glucose effect on N-acetylglucosamine catabolism in Candida albicans.
    Niimi M; Kamiyama A; Tokunaga M; Nakayama H
    Can J Microbiol; 1987 Apr; 33(4):345-7. PubMed ID: 3036326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Candida albicans mutant impaired in the utilization of N-acetylglucosamine.
    Corner BE; Poulter RT; Shepherd MG; Sullivan PA
    J Gen Microbiol; 1986 Jan; 132(1):15-9. PubMed ID: 3519852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.
    Torosantucci A; Angiolella L; Filesi C; Cassone A
    J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starvation and germ tube formation in the exponential phase Candida albicans.
    Cho T; Hamatake H; Kaminishi H; Kuroki A; Suehara T; Suehara Y; Sakima T; Hagihara Y; Watanabe K
    Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):510-21. PubMed ID: 2562099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes.
    Wendland J; Schaub Y; Walther A
    Appl Environ Microbiol; 2009 Sep; 75(18):5840-5. PubMed ID: 19648376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and characterization of a Saccharomyces cerevisiae strain able to grow on glucosamine as sole carbon and nitrogen source.
    Flores CL; Gancedo C
    Sci Rep; 2018 Nov; 8(1):16949. PubMed ID: 30446667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of N-acetylmannosamine catabolic pathway in yeast.
    Biswas M; Singh B; Datta A
    Biochim Biophys Acta; 1979 Jul; 585(4):535-42. PubMed ID: 223651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of N-acetylglucosamine kinase in yeast.
    Bhattacharya A; Puri M; Datta A
    Biochem J; 1974 Aug; 141(2):593-5. PubMed ID: 4375984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclid AMP and catabolite repression in yeasts, In Schizosaccharomyces pombe glucose lowers both intracellular adenosine 3':5'-monophosphate levels and the activity of catabolite-sensitive enzymes.
    Schlanderer G; Dellweg H
    Eur J Biochem; 1974 Nov; 49(1):305-16. PubMed ID: 4156516
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.